[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A dynamic uncertainty-aware ensemble model: : Application to lung cancer segmentation in digital pathology

Published: 01 November 2024 Publication History

Abstract

Ensemble models have emerged as a powerful technique for improving robustness in medical image segmentation. However, traditional ensembles suffer from limitations such as under-confidence and over-reliance on poor performing models. In this work, we introduce an Adaptive Uncertainty-based Ensemble (AUE) model for tumor segmentation in histopathological slides. Our approach leverages uncertainty estimates from Monte Carlo dropout during testing to dynamically select the optimal pair of models for each whole slide image. The AUE model combines predictions from the two most reliable models (K-Net, ResNeSt, Segformer, Twins), identified through uncertainty quantification, to enhance segmentation performance. We validate the AUE model on the ACDC@LungHP challenge dataset, systematically comparing it against state-of-the-art approaches. Results demonstrate that our uncertainty-guided ensemble achieves a mean Dice score of 0.8653 and outperforms traditional ensemble techniques and top-ranked methods from the challenge by over 3 %. Our adaptive ensemble approach provides accurate and reliable lung tumor delineation in histopathology images by managing model uncertainty.

Highlights

Adaptive uncertainty-based ensemble model (AUE) proposed for tumor segmentation.
AUE outperformed traditional ensemble models by a significant margin.
Utilizing uncertainty estimates enhances segmentation performance.

References

[1]
G. Litjens, C.I. Sánchez, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs, C. Hulsbergen - van de Kaa, P. Bult, B. van Ginneken, J. van der Laak, Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis, Sci. Rep. 6 (2016) 26286,.
[2]
M. Salvi, A. Mogetta, K.M. Meiburger, A. Gambella, L. Molinaro, A. Barreca, M. Papotti, F. Molinari, Karpinski score under digital investigation: a fully automated segmentation algorithm to identify vascular and stromal injury of donors’ kidneys, Electronics 9 (2020) 1644.
[3]
M.K.K. Niazi, A.V. Parwani, M.N. Gurcan, Digital pathology and artificial intelligence, Lancet Oncol. 20 (2019) e253–e261.
[4]
J. Van der Laak, G. Litjens, F. Ciompi, Deep learning in histopathology: the path to the clinic, Nat. Med. 27 (2021) 775–784.
[5]
G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A. Van Der Laak, B. Van Ginneken, C.I. Sánchez, A survey on deep learning in medical image analysis, Med. Image Anal. 42 (2017) 60–88.
[6]
P.K. Gupta, M.K. Siddiqui, X. Huang, R. Morales-Menendez, H. Panwar, H. Terashima-Marin, M.S. Wajid, COVID-WideNet—a capsule network for COVID-19 detection, Appl. Soft Comput. 122 (2022).
[7]
B. Kayalibay, G. Jensen, P. van der Smagt, CNN-based segmentation of medical imaging data, ArXiv Preprint ArXiv:1701.03056 (2017).
[8]
Y. Gao, X. Fu, Y. Chen, C. Guo, J. Wu, Post-pandemic healthcare for COVID-19 vaccine: tissue-aware diagnosis of cervical lymphadenopathy via multi-modal ultrasound semantic segmentation, Appl. Soft Comput. 133 (2023).
[9]
H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71 (2021) 209–249.
[10]
P. Giraud, M. Antoine, A. Larrouy, B. Milleron, P. Callard, Y. De Rycke, M.-F. Carette, J.-C. Rosenwald, J.-M. Cosset, M. Housset, Evaluation of microscopic tumor extension in non–small-cell lung cancer for three-dimensional conformal radiotherapy planning, Int. J. Radiat. Oncol. Biol. Phys. 48 (2000) 1015–1024.
[11]
W.D. Travis, E. Brambilla, A.P. Burke, A. Marx, A.G. Nicholson, Introduction to the 2015 world health organization classification of tumors of the lung, pleura, thymus, and heart, J. Thorac. Oncol. 10 (2015) 1240–1242.
[12]
B. Zhao, Y. Tan, W.-Y. Tsai, J. Qi, C. Xie, L. Lu, L.H. Schwartz, Reproducibility of radiomics for deciphering tumor phenotype with imaging, Sci. Rep. 6 (2016) 23428.
[13]
K. Kamnitsas, W. Bai, E. Ferrante, S. McDonagh, M. Sinclair, N. Pawlowski, M. Rajchl, M. Lee, B. Kainz, D. Rueckert, Ensembles of multiple models and architectures for robust brain tumour segmentation, in: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Third International Workshop, BrainLes 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 14, 2017, Revised Selected Papers 3, Springer, 2018: pp. 450–462.
[14]
T. Nair, D. Precup, D.L. Arnold, T. Arbel, Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation, Med. Image Anal. 59 (2020).
[15]
Z. Li, J. Zhang, T. Tan, X. Teng, X. Sun, H. Zhao, L. Liu, Y. Xiao, B. Lee, Y. Li, Deep learning methods for lung cancer segmentation in whole-slide histopathology images—the acdc@ lunghp challenge 2019, IEEE J. Biomed. Health Inf. 25 (2020) 429–440.
[16]
M. Salvi, F. Molinari, S. Iussich, L.V. Muscatello, L. Pazzini, S. Benali, B. Banco, F. Abramo, R. De Maria, L. Aresu, Histopathological classification of canine cutaneous round cell tumors using deep learning: a multi-center study, Front Vet. Sci. 8 (2021).
[17]
Y. Xiao, J. Wu, Z. Lin, X. Zhao, A deep learning-based multi-model ensemble method for cancer prediction, Comput. Methods Prog. Biomed. 153 (2018) 1–9.
[18]
M. Bilal, R. Jewsbury, R. Wang, H.M. AlGhamdi, A. Asif, M. Eastwood, N. Rajpoot, An aggregation of aggregation methods in computational pathology, Med Image Anal. (2023).
[19]
L. Rokach, Ensemble-based classifiers, Artif. Intell. Rev. 33 (2010) 1–39.
[20]
C. Ju, A. Bibaut, M. van der Laan, The relative performance of ensemble methods with deep convolutional neural networks for image classification, J. Appl. Stat. 45 (2018) 2800–2818.
[21]
L.I. Kuncheva, C.J. Whitaker, C.A. Shipp, R.P.W. Duin, Limits on the majority vote accuracy in classifier fusion, Pattern Anal. Appl. 6 (2003) 22–31.
[22]
A. Mohammed, R. Kora, A comprehensive review on ensemble deep learning: opportunities and challenges, J. King Saud. Univ. Comput. Inf. Sci. 35 (2023) 757–774.
[23]
S.K. Warfield, K.H. Zou, W.M. Wells, Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation, IEEE Trans. Med. Imaging 23 (2004) 903–921.
[24]
A. Jungo, R. Meier, E. Ermis, M. Blatti-Moreno, E. Herrmann, R. Wiest, M. Reyes, On the effect of inter-observer variability for a reliable estimation of uncertainty of medical image segmentation, September 16-20, 2018, Proceedings, Part I in: Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Springer, Granada, Spain, 2018, pp. 682–690. September 16-20, 2018, Proceedings, Part I.
[25]
T. DeVries, G.W. Taylor, Leveraging uncertainty estimates for predicting segmentation quality, ArXiv Preprint ArXiv:1807.00502 (2018).
[26]
A. Loquercio, M. Segu, D. Scaramuzza, A general framework for uncertainty estimation in deep learning, IEEE Robot Autom. Lett. 5 (2020) 3153–3160.
[27]
F.G. Zanjani, S. Zinger, B.E. Bejnordi, J.A.W.M. van der Laak, P.H.N. de With, Stain normalization of histopathology images using generative adversarial networks, in: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE, 2018, pp. 573–577.
[28]
M. Maadi, H.A. Khorshidi, U. AickelinUncertainty in Selective Bagging: A Dynamic Bi-objective Optimization Model, in: Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), SIAM, 2023: pp. 235–243.
[29]
M. Maadi, H.A. Khorshidi, U. AickelinAn Uncertainty-Accuracy-Based Score Function for Wrapper Methods in Feature Selection, in: 2023 IEEE International Conference on Fuzzy Systems (FUZZ), IEEE, 2023: pp. 1–6.
[30]
S. Seoni, V. Jahmunah, M. Salvi, P.D. Barua, F. Molinari, U.R. Acharya, Application of uncertainty quantification to artificial intelligence in healthcare: a review of last decade (2013–2023), Comput. Biol. Med (2023).
[31]
A. BenTaieb, G. Hamarneh, Adversarial stain transfer for histopathology image analysis, IEEE Trans. Med. Imaging 37 (2017) 792–802.
[32]
M. Salvi, F. Branciforti, F. Molinari, K.M. Meiburger, Generative models for color normalization in digital pathology and dermatology: advancing the learning paradigm, Expert Syst. Appl. 245 (2024).
[33]
A. Janowczyk, A. Madabhushi, Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases, J. Pathol. Inf. 7 (2016) 29.
[34]
M. Salvi, F. Molinari, N. Dogliani, M. Bosco, Automatic discrimination of neoplastic epithelium and stromal response in breast carcinoma, Comput. Biol. Med. 110 (2019) 8–14.
[35]
W. Zhang, J. Pang, K. Chen, C.C. Loy, K-net: Towards unified image segmentation, Adv. Neural Inf. Process Syst. 34 (2021) 10326–10338.
[36]
H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He, J. Mueller, R. Manmatha, Resnest: Split-attention networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: pp. 2736–2746.
[37]
E. Xie, W. Wang, Z. Yu, A. Anandkumar, J.M. Alvarez, P. Luo, SegFormer: simple and efficient design for semantic segmentation with transformers, Adv. Neural Inf. Process Syst. 34 (2021) 12077–12090.
[38]
X. Chu, Z. Tian, Y. Wang, B. Zhang, H. Ren, X. Wei, H. Xia, C. Shen, Twins: revisiting the design of spatial attention in vision transformers, Adv. Neural Inf. Process Syst. 34 (2021) 9355–9366.
[39]
Y. Gal, Z. Ghahramani, Bayesian convolutional neural networks with Bernoulli approximate variational inference, ArXiv Preprint ArXiv:1506.02158 (2015).
[40]
H. Wu, X. Gu, Towards dropout training for convolutional neural networks, Neural Netw. 71 (2015) 1–10.
[41]
A. Jungo, F. Balsiger, M. Reyes, Analyzing the quality and challenges of uncertainty estimations for brain tumor segmentation, Front Neurosci. 14 (2020) 282.
[42]
E. Bisong, E. Bisong, Linear Regression, Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners (2019) 231–241.
[43]
S.R. González, I. Zemmoura, C. Tauber, 3D brain tumor segmentation and survival prediction using ensembles of convolutional neural networks, October 4, 2020, Revised Selected Papers, Part II 6 in: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Springer, Lima, Peru, 2021, pp. 241–254., October 4, 2020, Revised Selected Papers, Part II 6.
[44]
A. Kendall, Y. Gal, What uncertainties do we need in bayesian deep learning for computer vision?, Adv. Neural Inf. Process Syst. 30 (2017).
[45]
F.C. Maruccio, W. Eppinga, M.-H. Laves, R.F. Navarro, M. Salvi, F. Molinari, P. Papaconstadopoulos, Clinical assessment of deep learning-based uncertainty maps in lung cancer segmentation, Phys. Med. Biol. 69 (2024).
[46]
M. Mohammed, H. Mwambi, I.B. Mboya, M.K. Elbashir, B. Omolo, A stacking ensemble deep learning approach to cancer type classification based on TCGA data, Sci. Rep. 11 (2021) 15626.
[47]
D.J.C. MacKay, Bayesian neural networks and density networks, Nucl. Instrum. Methods Phys. Res A 354 (1995) 73–80.
[48]
J.A. Vrugt, B.A. Robinson, Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging, Water Resour. Res. 43 (2007).
[49]
M.A. Inamdar, U. Raghavendra, A. Gudigar, S. Bhandary, M. Salvi, R.C. Deo, P.D. Barua, E.J. Ciaccio, F. Molinari, U.R. Acharya, A novel attention based model for semantic segmentation of prostate glands using histopathological images, IEEE Access (2023).

Index Terms

  1. A dynamic uncertainty-aware ensemble model: Application to lung cancer segmentation in digital pathology
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Applied Soft Computing
            Applied Soft Computing  Volume 165, Issue C
            Nov 2024
            1386 pages

            Publisher

            Elsevier Science Publishers B. V.

            Netherlands

            Publication History

            Published: 01 November 2024

            Author Tags

            1. Deep learning
            2. Ensemble model
            3. Lung cancer
            4. Monte Carlo dropout
            5. Uncertainty

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 21 Jan 2025

            Other Metrics

            Citations

            View Options

            View options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media