[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A metaverse framework for IoT-based remote patient monitoring and virtual consultations using AES-256 encryption

Published: 17 July 2024 Publication History

Abstract

The convergence of Internet of Things (IoT) and metaverse technologies is revolutionizing healthcare. This study introduces a pioneering framework tailored for health monitoring within the metaverse. By reshaping remote patient monitoring and virtual consultations, the framework utilizes vital parameters like heart rate, blood pressure, and body temperature. It integrates IoT sensors, augmented reality (AR), and virtual reality (VR), establishing a cohesive metaverse environment for healthcare interactions. Notably, robust 256-bit AES encryption ensures data privacy and security. Our analysis highlights the pivotal role of metaverse architecture in healthcare, emphasizing the efficacy of AES-256 encryption in preserving patient confidentiality. Findings underscore the framework's potential to enhance remote patient care while upholding stringent data privacy standards. Moreover, it fosters trust among patients, healthcare providers, and regulatory bodies. In summary, this comprehensive framework marks a significant advancement in remote patient care, promising improved health outcomes and a secure foundation for healthcare in the metaverse.

Highlights

Comprehensive design and development of the MedIoTverse medical framework.
Develop a sophisticated IoT-powered patient monitoring system within MedIoTverse.
Virtual consultation environment where healthcare professionals can interact with virtual patients.
AES-256 encryption ensures the privacy and security of patient data during transmission.

References

[1]
M.A. Khan, M.T. Quasim, N.S. Alghamdi, M.Y. Khan, A secure framework for authentication and encryption using improved ECC for IoT-based medical sensor data, IEEE Access vol. 8 (2020) 52018–52027,.
[2]
L.M. Dang, M.J. Piran, D. Han, K. Min, H. Moon, A survey on Internet of Things and cloud computing for healthcare, Electronics vol. 8 (7) (2019) 768.
[3]
R. Chengoden, N. Victor, T. Huynh-The, G. Yenduri, R.H. Jhaveri, M. Alazab, S. Bhattacharya, P. Hegde, P.K.R. Maddikunta, T.R. Gadekallu, Metaverse for healthcare: a survey on potential applications, challenges and future directions, IEEE Access vol. 11 (2023) 12765–12795,.
[4]
J. Thomason, Metahealth-how will the metaverse change health care, J. Metaverse vol. 1 (1) (2021) 13–16.
[5]
Y. Yang, K. Siau, W. Xie, Y. Sun, Smart health intelligent healthcare systems in the metaverse, artificial intelligence, and data science era, J. Organ. End. Use Comput. (JOEUC) vol. 34 (1) (2022) 1–14.
[6]
P. Bhattacharya, M.S. Obaidat, D. Savaliya, S. Sanghavi, S. Tanwar, B. SadaunMetaverse assisted telesurgery in healthcare 5.0: An interplay of blockchain and explainable ai IEEE, 2022 International Conference on Computer, Information and Telecommunication Systems (CITS)2022, 1–5.
[7]
M.A.I. Mozumder, M.M. Sheeraz, A. Athar, S. Aich, H.-C. KimOverview: technology roadmap of the future trend of metaverse based on iot, blockchain, ai technique, and medical domain metaverse activity IEEE, 2022 24th International Conference on Advanced Communication Technology (ICACT)2022, 256–261.
[8]
D. Yang, J. Zhou, R. Chen, Y. Song, Z. Song, X. Zhang, Q. Wang, K. Wang, C. Zhou, J. Sun, et al., Expert consensus on the metaverse in medicine, Clin. eHealth vol. 5 (2022) 1–9.
[9]
M.A. Marzaleh, M. Peyravi, F. Shaygani, A revolution in health: opportunities and challenges of the metaverse, Excli J. vol. 21 (2022) 791.
[10]
O. Maki, M. Alshaikhli, M. Gunduz, K.K. Naji, M. Abdulwahed, Development of digitalization road map for healthcare facility management, IEEE Access vol. 10 (2022) 14 450–14 462.
[11]
G. Srivastava, R.H. Jhaveri, S. Bhattacharya, S. Pandya, P.K.R. Maddikunta, G. Yenduri, J.G. Hall, M. Alazab, T.R. Gadekallu, et al., “Xai for cybersecurity: State of the art, challenges, open issues and future directions,” arXiv preprint arXiv:2206.03585, 2022.
[12]
S. Wang, M.A. Qureshi, L. Miralles-Pechuaán, T. Huynh-The, T.R. Gadekallu, and M. Liyanage, “Explainable ai for b5g/6g: Technical aspects, use cases, and research challenges,” arXiv preprint arXiv:2112.04698, 2021.
[13]
R. Patan, R. M. PariziSecuring data exchange in the convergence of metaverse and IoT applications Benevento Italy, ACM, in Proceedings of the 18th International Conference on Availability, Reliability and Security. Presented at the ARES 2023: The 18th International Conference on Availability, Reliability and Security, 2023, in Proceedings of the 18th International Conference on AvailabilityReliability and Security. Presented at the ARES : The 18th International Conference on Availability, Reliability and Security, 20231–8, 10.1145/3600160.3605019.
[14]
T. Huynh-The, T.R. Gadekallu, W. Wang, G. Yenduri, P. Ranaweera, Q.-V. Pham, D.B. da Costa, M. Liyanage, Blockchain for the metaverse: a review, Future Gener. Comput. Syst. vol. 143 (2023) 1–12.
[15]
V. Ahsani, A. Rahimi, M. Letafati, B.H. KhalajUnlocking metaverse-as-a-service: The three pillars to watch – privacy and security, edge computing, and blockchain,” 2023 arXiv Prepr. arXiv:2301. 01221, 2023, 〈https://arxiv.org/abs/2301.01221〉, 1–10.
[16]
G. Singh, J. Singh, Blockchain-based privacy-preserving data exchange in Metaverse-IoT integration, J. Ambient Intell. Humaniz. Comput. vol. 12 (5) (2021) 4885–4898.
[17]
Y. Liu, F. Li, W. Li, H. Li, Data integrity and confidentiality in the Internet of Things: a blockchain-based solution, IEEE Internet Things J. vol. 9 (5) (2022) 4275–4285.
[18]
Y. Li, J. Liu, R. Fan, X. Li, Privacy-preserving data sharing in metaverse and IoT integration using attribute-based encryption, IEEE Trans. Ind. Inform. vol. 17 (3) (2021) 1892–1901.
[19]
F. Shi, H. Ning, X. Zhang, R. Li, Q. Tian, S. Zhang, Y. Zheng, Y. Guo, M. Daneshmand, “A new technology perspective of the metaverse: its essence, framework and challenges, (vol) Digit. Commun. Netw. 2023 (1) (2023) 1–20.
[20]
A. Ometov, V. Petrov, S. Bezzateev, S.A. Ndreev, Y. Koucheryavy, M. Gerla, Challenges of multi-factor authentication for securing advanced IoT applications, IEEE Netw. vol. 33 (2) (2019) 82–88.
[21]
H. Kim, J. Lim, J. Lee, M. Kang, Secure data sharing for IoT and metaverse integration using physical unclonable function, IEEE Access vol. 9 (2021) 106387–106398.
[22]
M. Corbett, S. Jiacheng, B. Ji, GazePair: efficient pairing of augmented reality devices using gaze tracking, IEEE Trans. Mob. Comput. vol, 1 (2023) (2023) 1–10.
[23]
Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T.H. Luan, X. Shen, A survey on metaverse: fundamentals, security, and privacy, IEEE Commun. Surv. Tutor. vol. 25 (2023) 319–352,.
[24]
C. Kai, H. Zhou, Y. Yi, W. Huang, Collaborative cloud-edge-end task offloading in mobile-edge computing networks with limited communication capability, IEEE Trans. Cogn. Commun. Netw. vol. 7 (2) (Aug. 2021) 624–634.
[25]
ISO/IEC 23005 (MPEG-V) standards. Accessed: Sep. 20, 2021. [Online]. Available: 〈https://mpeg.chiariglione.org/standards/mpeg-v〉.
[26]
IEEE 2888 standards. Accessed: Dec. 20, 2021. [Online]. Available: 〈https://sagroups.ieee.org/2888/〉.
[27]
U. Jayasinghe, G.M. Lee, T.-W. Um, Q. Shi, Machine learning based trust computational model for IoT services, (Jan.-Mar) IEEE Trans. Sustain. Comput. vol. 4 (1) (2019) 39–52. (Jan.-Mar).
[28]
M. Xu, W.C. Ng, W.Y.B. Lim, J. Kang, Z. Xiong, D. Niyato, Q. Yang, X. Shen, and C. Miao, “A full dive into realizing the edge-enabled metaverse: Visions, enabling technologies, and challenges,” arXiv preprint arXiv:2203.05471, 2022.
[29]
H. Ning, H. Wang, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding, and M. Daneshmand, “A survey on metaverse: the state-of-the-art, technologies, applications, and challenges,” arXiv preprint arXiv:2111.09673, 2021.
[30]
L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin, A. Kumar, C. Bermejo, and P. Hui, “All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, and research agenda,” arXiv preprint arXiv:2110.05352, 2021.
[31]
Y. Wu, K. Zhang, Y. Zhang, Digital twin networks: a survey, IEEE Internet Things J. vol. 8 (18) (Sept. 2021) 13 789–13 804.
[32]
T. Huynh-The, Q.-V. Pham, X.-Q. Pham, T.T. Nguyen, Z. Han, and D.-S. Kim, “Artificial intelligence for the metaverse: A survey,” arXiv preprint arXiv:2202.10336, 2022.
[33]
C.T. Nguyen, D.T. Hoang, D.N. Nguyen, and E. Dutkiewicz, “Metachain: A novel blockchain-based framework for metaverse applications,” arXiv preprint arXiv:2201.00759, 2021.
[34]
Y. Wang, Z. Su, J. Ni, N. Zhang, X. Shen, Blockchain-empowered space-air-ground integrated networks: opportunities, challenges, and solutions, IEEE Commun. Surv. Tutor. vol. 24 (1) (2022) 160–209.
[35]
Metaverse breached: Second Life customer database hacked. Accessed: Jan. 15, 2021. [Online]. Available: 〈https://techcrunch.com/2006/09/08/metaverse-breached-second-life-customer-database-hacked/〉.
[36]
T. Zhao, Y. Wang, J. Liu, Y. Chen, J. Cheng, J. Yu, Trueheart: continuous authentication on wrist-worn wearables using PPG-based biometrics, IEEE Conf. Comput. Commun. (INFOCOM) (Jul. 2020) 30–39.
[37]
M. Sugimoto“Extended reality (XR: VR/AR/MR), 3D printing, holography, AI, radiomics, and online VR Tele-medicine for precision surgery,” Springer, in Surgery and Operating Room Innovation, Nov. 2021, 65–70.
[38]
M.A. Jan, F. Khan, R. Khan, S. Mastorakis, V.G. Menon, M. Alazab, P. Watters, Lightweight mutual authentication and privacy-preservation scheme for intelligent wearable devices in industrial-CPS, IEEE Trans. Ind. Inform. vol. 17 (8) (Aug. 2021) 5829–5839.
[39]
H. Aksu, A.S. Uluagac, E.S. Bentley, Identification of wearable devices with Bluetooth, (Apr.-Jun) IEEE Trans. Sustain. Comput. vol. 6 (2) (2021) 221–230. (Apr.-Jun).
[40]
M. Shen, H. Liu, L. Zhu, K. Xu, H. Yu, X. Du, M. Guizani, Blockchain-assisted secure device authentication for cross-domain industrial IoT, IEEE J. Sel. Areas Commun. vol. 38 (5) (May 2020) 942–954.
[41]
J. Chen, Z. Zhan, K. He, R. Du, D. Wang, F. Liu, XAuth: efficient privacy-preserving cross-domain authentication, IEEE Trans. Dependable Secur. Comput. (2021),.
[42]
Meet the MetaHuman. Accessed: Jan. 20, 2022. [Online]. Available: 〈https://www.unrealengine.com/en-US/digital-humans〉.
[43]
L.Y. Zhang, Y. Zheng, J. Weng, C. Wang, Z. Shan, K. Ren, You can access but you cannot leak: Defending against illegal content redistribution in encrypted cloud media center, IEEE Trans. Dependable Secur. Comput. vol. 17 (6) (2020) 1218–1231.
[44]
Y. Wang, Z. Su, N. Zhang, J. Chen, X. Sun, Z. Ye, Z. Zhou, SPDS: a secure and auditable private data sharing scheme for smart grid based on blockchain, IEEE Trans. Ind. Inform. vol. 17 (11) (Nov. 2021) 7688–7699.
[45]
The right of publicity: Likeness lawsuits against video game companies. Accessed: Feb. 2, 2020. [Online]. Available: 〈https://btlj.org/2014/12/the-right-of-publicity-likeness-lawsuits-against-video-game-companies/〉.
[46]
J. Shang, S. Chen, J. Wu, S. Yin, ARSpy: breaking location-based multi-player augmented reality application for user location tracking, IEEE Trans. Mob. Comput. vol. 21 (2) (Feb. 2022) 433–447.
[47]
J. Shang, S. Chen, J. Wu, S. Yin, ARSpy: breaking location-based multi-player augmented reality application for user location tracking, IEEE Trans. Mob. Comput. vol. 21 (2) (Feb. 2022) 433–447.
[48]
J. Wei, J. Li, Y. Lin, J. Zhang, “LDP-based social content protection for trending topic recommendation, IEEE Internet Things J. vol. 8 (6) (Mar. 2021) 4353–4372.
[49]
H. Song, T. Luo, X. Wang, J. Li, Multiple sensitive values-oriented personalized privacy preservation based on randomized response, IEEE Trans. Inf. Forensics Secur. vol. 15 (Dec. 2020) 2209–2224.
[50]
D.Y. Zhang, Z. Kou, D. Wang, FedSens: a federated learning approach for smart health sensing with class imbalance in resource constrained edge computing, IEEE Conf. Comput. Commun. (INFOCOM) (May 2021) 1–10.
[51]
J. Mills, J. Hu, G. Min, Multi-task federated learning for personalized deep neural networks in edge computing, IEEE Trans. Parallel Distrib. Syst. vol. 33 (3) (Mar. 2022) 630–641.
[52]
The metaverse has a groping problem already (MIT technology review). Accessed: Dec. 17, 2021. [Online]. Available: 〈https://www.technologyreview.com/2021/12/16/1042516/the-metaverse-has-a-groping-problem/〉.
[53]
Meta establishes 4-foot “personal boundary” to deter VR groping. Accessed: Feb. 9, 2022. [Online]. Available: 〈https://arstechnica.com/gaming/2022/02/meta-establishes-four-foot-personal-boundary-to-deter-vr-groping/〉.
[54]
The Privacy Sandbox. Accessed: Mar. 20, 2022. [Online]. Available: 〈https://privacysandbox.com/〉.
[55]
Learning with privacy at scale. Accessed: Mar. 9, 2022. [Online]. Available: 〈https://docs-assets.developer.apple.com/mlresearch/papers/learning-with-privacy-at-scale.pdf〉.
[56]
Key infrastructure of the metaverse: status, opportunities, and challenges of NFT data storage. Accessed: Feb. 2, 2022. [Online]. Available: 〈https://www.hashkey.com/key-infrastructure-of-the-metaverse-status-opportunities-and-challenges-of-nft-data-storage/〉.
[57]
W.Y.B. Lim, Z. Xiong, D. Niyato, X. Cao, C. Miao, S. Sun, Q. Yang” arXiv preprint Realiz. metaverse edge Intell.: A match made Heaven arXiv:2203.05471, 2022.
[58]
[59]
P.S. Addepalli, P.V. Lakshmi, A hybrid security framework for medical data in IoT applications, INDJCSE vol. 13 (2022) 300–311,.
[60]
A.T. Kalpally, K.P. Vijayakumar, Privacy and security framework for health care systems in IoT: originating at architecture through application, J. Ambient Intell. Humaniz. Comput. (2021) 1–11.
[61]
K.M. Besher, Z. Subah, M.Z. Ali, IoT sensor initiated healthcare data security, IEEE Sens. J. (2020).
[62]
S. Pirbhulal, O.W. Samuel, W. Wu, A.K. Sangaiah, G. Li, A joint resource-aware and medical data security framework for wearable healthcare systems, Future Gener. Comput. Syst. vol. 95 (2019) 382–391.
[63]
M.S. Abdul-Karim, K.H. Rahouma, K. Nasr, Effective pipelined FPGA implementation for AES-256 Algorithm 46, ISSN-1110-2586 Egypt. Comput. Sci. J. vol. 46 (2022) 2–8. ISSN-1110-2586.
[64]
M. Faaique, Overview of big data analytics in modern astronomy, Int. J. Math., Stat., Comput. Sci. 2 (2023) 96–113,.
[65]
C. Manthiramoorthy, K.M.S. Khan, A. N. A, Comparing several encrypted cloud storage platforms, Int. J. Math., Stat., Comput. Sci. 2 (2023) 44–62,.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Applied Soft Computing
Applied Soft Computing  Volume 158, Issue C
Jun 2024
633 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 17 July 2024

Author Tags

  1. Metaverse
  2. Internet of things
  3. Advanced encryption standard
  4. Remote patient monitoring system
  5. Virtual consultations

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media