[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

An adaptive multi-patch isogeometric phase-field model for dynamic brittle fracture

Published: 04 March 2024 Publication History

Abstract

This paper presents an adaptive multi-patch isogeometric phase-field model based on Nitsche's method for simulating dynamic brittle fracture. Complex structures are accurately represented with multiple patches, and Nitsche's method is used to link two adjacent patches to ensure the compatibility and continuity of physical quantities (such as displacements, stresses, phase-field variables) on the coupling edge. LR NURBS with the local refinement ability are used for spatial discretization, while a generalized-α method is used for temporal discretization. The staggered algorithm and hybrid PFM formulation are adopted to enhance the solution efficiency of multi-field coupled system. In addition, the local refinement is executed utilising the phase-field threshold. Several dynamic fracture examples are used to validate the proposed approach's accuracy and effectiveness. The proposed approach can effectively model dynamic fracture propagation, and numerical results demonstrate that the adaptive analysis may significantly lower the computing cost.

Highlights

An adaptive dynamic multi-patch isogeometric phase-field model is developed.
Complex structure is represented with multiple patches.
Nitsche's method is employed to link two patches.
A prescribed threshold of phase-field variable is used as a refinement indicator.
Numerical results demonstrate the accuracy and effectiveness of the approach.

References

[1]
T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng. 45 (5) (1999) 601–620.
[2]
I. Asareh, Y.-C. Yoon, J.-H. Song, A numerical method for dynamic fracture using the extended finite element method with non-nodal enrichment parameters, Int. J. Impact Eng. 121 (2018) 63–76.
[3]
J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46 (1) (1999) 131–150.
[4]
E.T. Ooi, S. Natarajan, C. Song, E.H. Ooi, Dynamic fracture simulations using the scaled boundary finite element method on hybrid polygon-quadtree meshes, Int. J. Impact Eng. 90 (2016) 154–164.
[5]
J.M. Gu, T.T. Yu, L.V. Lich, S. Tanaka, H.T. Yuan, T.Q. Bui, Crack growth adaptive XIGA simulation in isotropic and orthotropic materials, Comput. Methods Appl. Mech. Eng. 365 (2020).
[6]
H.T. Yuan, T.T. Yu, T.Q. Bui, Multi-patch local mesh refinement XIGA based on LR NURBS and Nitsche's method for crack growth in complex cracked plates, Eng. Fract. Mech. 250 (2021).
[7]
T. Dirgantara, M.H. Aliabadi, Crack growth analysis of plates loaded by bending and tension using dual boundary element method, Int. J. Fract. 105 (1) (2000) 27–47.
[8]
T. Belytschko, L. Gu, Y.Y. Lu, Fracture and crack growth by element free Galerkin methods, Model. Simul. Mater. Sci. Eng. 2 (3A) (1994) 519–534.
[9]
C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, R. de Borst, An isogeometric analysis approach to gradient damage models, Int. J. Numer. Methods Eng. 86 (1) (2011) 115–134.
[10]
M. Hofacker, C. Miehe, A phase field model of dynamic fracture: robust field updates for the analysis of complex crack patterns, Int. J. Numer. Methods Eng. 93 (3) (2013) 276–301.
[11]
J. Bleyer, C. Roux-Langlois, J.-F. Molinari, Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms, Int. J. Fract. 204 (1) (2017) 79–100.
[12]
Z.F. Si, Hirshikesh, T.T. Yu, S. Natarajan, An adaptive phase-field simulation for hydrogen embrittlement fracture with multi-patch isogeometric method, Comput. Methods Appl. Mech. Eng. 418 (2024).
[13]
C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng. 199 (45–48) (2010) 2765–2778.
[14]
Y.C. Li, T.T. Yu, C. Xing, S. Natarajan, Crack growth in homogeneous media using an adaptive isogeometric fourth-order phase-field model, Comput. Methods Appl. Mech. Eng. 413 (2023).
[15]
J. Wu, C. McAuliffe, H. Waisman, G. Deodatis, Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method, Comput. Methods Appl. Mech. Eng. 312 (2016) 596–634.
[16]
C. Xing, T.T. Yu, Y.L. Sun, Y.X. Wang, An adaptive phase-field model with variable-node elements for fracture of hyperelastic materials at large deformations, Eng. Fract. Mech. 281 (2023).
[17]
R. Alessi, S. Vidoli, L. De Lorenzis, A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case, Eng. Fract. Mech. 190 (2018) 53–73.
[18]
S. Teichtmeister, D. Kienle, F. Aldakheel, M.A. Keip, Phase field modeling of fracture in anisotropic brittle solids, Int. J. Non-Linear Mech. 97 (2017) 1–21.
[19]
T.T. Nguyen, J. Yvonnet, M. Bornert, C. Chateau, Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: direct comparison between in situ testing-microCT experiments and phase field simulations, J. Mech. Phys. Solids 95 (2016) 320–350.
[20]
M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, C.M. Landis, A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng. 217 (2012) 77–95.
[21]
M. Arriaga, H. Waisman, Combined stability analysis of phase-field dynamic fracture and shear band localization, Int. J. Plast. 96 (2017) 81–119.
[22]
H. Han, T. Wang, G. Huang, Z. Liu, Z. Zhuang, Study of spontaneous adiabatic shear bands in expanding rings under explosion by thermo-elastic-plastic phase field model, Int. J. Impact Eng. 161 (2022).
[23]
T. Zhang, T.Q. Bui, T. Yu, Y. Li, S. Natarajan, Quasi-static thermoelastic fracture: adaptive phase-field modeling with variable-node elements, Theor. Appl. Fract. Mech. 124 (2023).
[24]
C. Miehe, S. Mauthe, Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput. Methods Appl. Mech. Eng. 304 (2016) 619–655.
[25]
B. Bourdin, C.J. Larsen, C.L. Richardson, A time-discrete model for dynamic fracture based on crack regularization, Int. J. Fract. 168 (2) (2011) 133–143.
[26]
C.J. Larsen, C. Ortner, E. Suli, Existence of solutions to a regularized model of dynamic fracture, Math. Models Methods Appl. Sci. 20 (7) (2010) 1021–1048.
[27]
A. Schlueter, A. Willenbuecher, C. Kuhn, R. Mueller, Phase field approximation of dynamic brittle fracture, Comput. Mech. 54 (5) (2014) 1141–1161.
[28]
C. Kuhn, R. Muller, A continuum phase field model for fracture, Eng. Fract. Mech. 77 (18) (2010) 3625–3634.
[29]
S. Liu, Z. Wang, Y. Zhang, M. Kou, J. Bi, The phase-field simulations of blasting failure in granites, Int. J. Impact Eng. 167 (2022).
[30]
V.P. Nguyen, J.-Y. Wu, Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model, Comput. Methods Appl. Mech. Eng. 340 (2018) 1000–1022.
[31]
L. Hai, J.Y. Wu, J. Li, A phase-field damage model with micro inertia effect for the dynamic fracture of quasi-brittle solids, Eng. Fract. Mech. 225 (2020).
[32]
L. Hai, J. Li, A rate-dependent phase-field framework for the dynamic failure of quasi-brittle materials, Eng. Fract. Mech. 252 (2021).
[33]
D.H. Doan, T.Q. Bui, T.V. Do, N.D. Duc, A rate-dependent hybrid phase field model for dynamic crack propagation, J. Appl. Phys. 122 (11) (2017).
[34]
L. Hai, J.Y. Wu, J. Li, A rate-dependent phase-field model for dynamic shear band formation in strength-like and toughness-like modes, J. Mech. Phys. Solids 164 (2022).
[35]
Hirshikesh, S. Natarajan, R.K. Annabattula, Modeling crack propagation in variable stiffness composite laminates using the phase field method, Compos. Struct. 209 (2019) 424–433.
[36]
L. Chen, B. Li, R. de Borst, Adaptive isogeometric analysis for phase-field modeling of anisotropic brittle fracture, Int. J. Numer. Methods Eng. 121 (20) (2020) 4630–4648.
[37]
J. Chua, V. Agrawal, T. Breitzman, G. Gazonas, K. Dayal, Phase-field modeling and peridynamics for defect dynamics, and an augmented phase-field model with viscous stresses, J. Mech. Phys. Solids 159 (2022).
[38]
Y. Shao, Q. Duan, S. Qiu, Adaptive consistent element-free Galerkin method for phase-field model of brittle fracture, Comput. Mech. 64 (3) (2019) 741–767.
[39]
T. Yu, B. Chen, S. Natarajan, T.Q. Bui, A locally refined adaptive isogeometric analysis for steady-state heat conduction problems, Eng. Anal. Bound. Elem. 117 (2020) 119–131.
[40]
T. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCs, ACM Trans. Graph. 22 (3) (2003) 477–484.
[41]
R.P. Dhote, H. Gomez, R.N.V. Melnik, J. Zu, 3D coupled thermo-mechanical phase-field modeling of shape memory alloy dynamics via isogeometric analysis, Comput. Struct. 154 (2015) 48–58.
[42]
C. Hesch, S. Schuß, M. Dittmann, M. Franke, K. Weinberg, Isogeometric analysis and hierarchical refinement for higher-order phase-field models, Comput. Methods Appl. Mech. Eng. 303 (2016) 185–207.
[43]
J. Bueno, I. Starodumov, H. Gomez, P. Galenko, D. Alexandrov, Three dimensional structures predicted by the modified phase field crystal equation, Comput. Mater. Sci. 111 (2016) 310–312.
[44]
H.L. Ren, X.Y. Zhuang, C. Anitescu, T. Rabczuk, An explicit phase field method for brittle dynamic fracture, Comput. Struct. 217 (2019) 45–56.
[45]
W. Li, N. Nguyen-Thanh, K. Zhou, Phase-field modeling of brittle fracture in a 3D polycrystalline material via an adaptive isogeometric-meshfree approach, Int. J. Numer. Methods Eng. 121 (22) (2020) 5042–5065.
[46]
T. Heister, M.F. Wheeler, T. Wick, A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Eng. 290 (2015) 466–495.
[47]
A. Pantano, R.C. Averill, A penalty-based interface technology for coupling independently modeled 3D finite element meshes, Finite Elem. Anal. Des. 43 (4) (2007) 271–286.
[48]
D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (5) (2002) 1749–1779.
[49]
Y. Guo, M. Ruess, Nitsche's method for a coupling of isogeometric thin shells and blended shell structures, Comput. Methods Appl. Mech. Eng. 284 (2015) 881–905.
[50]
J. Mergheim, E. Kuhl, P. Steinmann, A hybrid discontinuous Galerkin/interface method for the computational modelling of failure, Commun. Numer. Methods Eng. 20 (7) (2004) 511–519.
[51]
J.D. Sanders, T.A. Laursen, M.A. Puso, A Nitsche embedded mesh method, Comput. Mech. 49 (2012) 243–257.
[52]
S. Goswami, C. Anitescu, T. Rabczuk, Adaptive phase field analysis with dual hierarchical meshes for brittle fracture, Eng. Fract. Mech. 218 (2019).
[53]
C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng. 83 (10) (2010) 1273–1311.
[54]
M. Ambati, T. Gerasimov, L.D. Lorenzis, A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech. 55 (2) (2015) 383–405.
[55]
L. Piegl, W. Tiller, The NURBS Book, 2nd edition, Springer, 1997.
[56]
K.A. Johannessen, T. Kvamsdal, T. Dokken, Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Eng. 269 (2014) 471–514.
[57]
V.P. Nguyen, P. Kerfriden, M. Brino, S.P.A. Bordas, E. Bonisoli, Nitsche's method for two and three dimensional NURBS patch coupling, Comput. Mech. 53 (2014) 1163–1182.
[58]
A. Muixí, S. Fernández-Méndez, A. Rodríguez-Ferran, Adaptive refinement for phase-field models of brittle fracture based on Nitsche's method, Comput. Mech. 66 (2020) 69–85.
[59]
T. Belytschko, H. Chen, J. Xu, G. Zi, Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Int. J. Numer. Methods Eng. 58 (12) (2003) 1873–1905.
[60]
D. Motamedi, S. Mohammadi, Dynamic analysis of fixed cracks in composites by the extended finite element method, Eng. Fract. Mech. 77 (17) (2010) 3373–3393.
[61]
T. Rabczuk, J.H. Song, T. Belytschko, Simulations of instability in dynamic fracture by the cracking particles method, Eng. Fract. Mech. 76 (2009) 730–741.
[62]
S.W. Zhou, T. Rabczuk, X.Y. Zhuang, Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies, Adv. Eng. Softw. 122 (2018) 31–49.
[63]
T. Rabczuk, T. Belytschko, Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Int. J. Numer. Methods Eng. 61 (2004) 2316–2343.
[64]
T. Rabczuk, T. Belytschko, A three-dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. Methods Appl. Mech. Eng. 196 (2007) 2777–2799.
[65]
J. Kalthoff, Modes of dynamic shear failure in solids, Int. J. Fract. 101 (1–2) (2000) 1–31.
[66]
G. Liu, Q. Li, M.A. Msekh, Z. Zuo, Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model, Comput. Mater. Sci. 121 (2016) 35–47.

Index Terms

  1. An adaptive multi-patch isogeometric phase-field model for dynamic brittle fracture
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Computers & Mathematics with Applications
          Computers & Mathematics with Applications  Volume 153, Issue C
          Jan 2024
          257 pages

          Publisher

          Pergamon Press, Inc.

          United States

          Publication History

          Published: 04 March 2024

          Author Tags

          1. Dynamic brittle fracture
          2. LR NURBS
          3. Multi-patch modeling
          4. Nitsche's method
          5. Adaptive refinement
          6. Hybrid phase-field model

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 13 Jan 2025

          Other Metrics

          Citations

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media