[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A finite element framework for some mimetic finite difference discretizations

Published: 01 December 2015 Publication History

Abstract

In this work we derive equivalence relations between mimetic finite difference schemes on simplicial grids and modified Nédélec-Raviart-Thomas finite element methods for model problems in H ( curl ) and H ( div ) . This provides a simple and transparent way to analyze such mimetic finite difference discretizations using the well-known results from finite element theory. The finite element framework that we develop is also crucial for the design of efficient multigrid methods for mimetic finite difference discretizations, since it allows us to use canonical inter-grid transfer operators arising from the finite element framework. We provide special Local Fourier Analysis and numerical results to demonstrate the efficiency of such multigrid methods.

References

[1]
M. Shashkov, Conservative Finite-Difference Methods on General Grids, in: Symbolic and Numeric Computation Series, CRC Press, Boca Raton, FL, 1996.
[2]
P.N. Vabishchevich, Finite-difference approximation of mathematical physics problems on irregular grids, Comput. Methods Appl. Math., 5 (2005) 294-330.
[3]
J. Hyman, M. Shashkov, S. Steinberg, The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys., 132 (1997) 130-148.
[4]
J.E. Morel, R.M. Roberts, M.J. Shashkov, A local support-operators diffusion discretization scheme for quadrilateral r - z meshes, J. Comput. Phys., 144 (1998) 17-51.
[5]
M. Shashkov, S. Steinberg, Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys., 129 (1996) 383-405.
[6]
J.M. Hyman, M. Shashkov, Mimetic discretizations for Maxwell's equations and the equations of magnetic diffusion, Prog. Electromagnetics Res., 32 (2001) 89-121.
[7]
L.G. Margolin, M. Shashkov, P.K. Smolarkiewicz, A discrete operator calculus for finite difference approximations, Comput. Methods Appl. Mech. Engrg., 187 (2000) 365-383.
[8]
J.C. Campbell, M.J. Shashkov, A tensor artificial viscosity using a mimetic finite difference algorithm, J. Comput. Phys., 172 (2001) 739-765.
[9]
K. Lipnikov, G. Manzini, M. Shashkov, Mimetic finite difference method, J. Comput. Phys., 257 (2014) 1163-1227.
[10]
L. Beirão da Veiga, K. Lipnikov, G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems, in: Modeling, Simulation & Applications, vol. 11, Springer-Verlag, Berlin, 2014.
[11]
A. Bossavit, Discretization of electromagnetic problems: the "generalized finite differences" approach, Handb. Numer. Anal., 13 (2005) 105-197.
[12]
M. Berndt, K. Lipnikov, D. Moulton, M. Shashkov, Convergence of mimetic finite difference discretizations of the diffusion equation, East-West J. Numer. Math., 9 (2001) 265-284.
[13]
M. Berndt, K. Lipnikov, M. Shashkov, M.F. Wheeler, I. Yotov, A mortar mimetic finite difference method on non-matching grids, Numer. Math., 102 (2005) 203-230.
[14]
F. Brezzi, K. Lipnikov, M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 43 (2005) 1872-1896.
[15]
Y. Kuznetsov, S. Repin, New mixed finite element method on polygonal and polyhedral meshes, Russian J. Numer. Anal. Math. Modelling, 18 (2003) 261-278.
[16]
Y. Kuznetsov, S. Repin, Mixed finite element method on polygonal and polyhedral meshes, in: Numerical Mathematics and Advanced Applications, Springer, Berlin, 2004, pp. 615-622.
[17]
I.V. Lashuk, P.S. Vassilevski, Element agglomeration coarse Raviart-Thomas spaces with improved approximation properties, Numer. Linear Algebra Appl., 19 (2012) 414-426.
[18]
I.V. Lashuk, P.S. Vassilevski, The construction of the coarse de Rham complexes with improved approximation properties, Comput. Methods Appl. Math., 14 (2014) 257-303.
[19]
J.E. Pasciak, P.S. Vassilevski, Exact de Rham sequences of spaces defined on macro-elements in two and three spatial dimensions, SIAM J. Sci. Comput., 30 (2008) 2427-2446.
[20]
L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23 (2013) 199-214.
[21]
L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo, The Hitchhiker's guide to the virtual element method, Math. Models Methods Appl. Sci., 24 (2014) 1541-1573.
[22]
F. Brezzi, R.S. Falk, L.D. Marini, Basic principles of mixed virtual element methods, ESAIM Math. Model. Numer. Anal., 48 (2014) 1227-1240.
[23]
F.J. Gaspar, J.L. Gracia, F.J. Lisbona, C.W. Oosterlee, Distributive smoothers in multigrid for problems with dominating grad-div operators, Numer. Linear Algebra Appl., 15 (2008) 661-683.
[24]
A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31 (1977) 333-390.
[25]
W. Hackbusch, Multigrid Methods and Applications, in: Springer Series in Computational Mathematics, vol. 4, Springer-Verlag, Berlin, 1985.
[26]
U. Trottenberg, C.W. Oosterlee, A. Schüller, Multigrid, Academic Press Inc., San Diego, CA, 2001.
[27]
P. Wesseling, An Introduction to Multigrid Methods, in: Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1992.
[28]
J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34 (1992) 581-613.
[29]
D.N. Arnold, R.S. Falk, R. Winther, Multigrid in H ( div ) and H ( curl ), Numer. Math., 85 (2000) 197-217.
[30]
R. Hiptmair, J. Xu, Nodal auxiliary space preconditioning in H ( curl ) and H ( div ) spaces, SIAM J. Numer. Anal., 45 (2007) 2483-2509.
[31]
C. Rodrigo, F.J. Gaspar, F.J. Lisbona, Geometric Multigrid Methods on Triangular Grids: Application to Semi-Structured Meshes, Lambert Academic Publishing, Saarbrüken, 2012.
[32]
V. Girault, P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, in: Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986.
[33]
J.-C. Nédélec, Mixed finite elements in R 3, Numer. Math., 35 (1980) 315-341.
[34]
J.-C. Nédélec, A new family of mixed finite elements in R 3, Numer. Math., 50 (1986) 57-81.
[35]
P.-A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in: Lecture Notes in Math., vol. 606, Springer, Berlin, 1977, pp. 292-315.
[36]
R. Wienands, W. Joppich, Practical Fourier Analysis for Multigrid Methods, in: Numerical Insights, vol. 4, Chapman & Hall/CRC, Boca Raton, FL, 2005.
[37]
F.J. Gaspar, J.L. Gracia, F.J. Lisbona, Fourier analysis for multigrid methods on triangular grids, SIAM J. Sci. Comput., 31 (2009) 2081-2102.
[38]
F.J. Gaspar, F.J. Lisbona, C. Rodrigo, Multigrid Fourier analysis on semi-structured anisotropic meshes for vector problems, Math. Model. Anal., 15 (2010) 39-54.
[39]
B. Gmeiner, T. Gradl, F. Gaspar, U. Rüde, Optimization of the multigrid-convergence rate on semi-structured meshes by local Fourier analysis, Comput. Math. Appl., 65 (2013) 694-711.
[40]
C. Rodrigo, F. Sanz, F.J. Gaspar, F.J. Lisbona, Local Fourier analysis for edge-based discretizations on triangular grids, Numer. Math. TMA, 8 (2015) 78-96.
[41]
S.P. MacLachlan, C.W. Oosterlee, Local Fourier analysis for multigrid with overlapping smoothers applied to systems of PDEs, Numer. Linear Algebra Appl., 18 (2011) 751-774.
[42]
J. Molenaar, A two-grid analysis of the combination of mixed finite elements and Vanka-type relaxation, in: Internat. Ser. Numer. Math., vol. 98, Birkhäuser, Basel, 1991, pp. 313-323.
[43]
S. Sivaloganathan, The use of local mode analysis in the design and comparison of multigrid methods, Comput. Phys. Comm., 65 (1991) 246-252.
[44]
C. Rodrigo, F.J. Gaspar, F.J. Lisbona, On a local Fourier analysis for overlapping block smoothers on triangular grids, 2015, submitted for publication.

Cited By

View all
  • (2020)Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problemsJournal of Computational and Applied Mathematics10.1016/j.cam.2019.06.028364:COnline publication date: 15-Jan-2020
  1. A finite element framework for some mimetic finite difference discretizations

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Computers & Mathematics with Applications
      Computers & Mathematics with Applications  Volume 70, Issue 11
      December 2015
      167 pages

      Publisher

      Pergamon Press, Inc.

      United States

      Publication History

      Published: 01 December 2015

      Author Tags

      1. Finite element methods
      2. Local Fourier analysis
      3. Mimetic finite differences
      4. Multigrid
      5. Nédélec-Raviart-Thomas finite elements

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 05 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2020)Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problemsJournal of Computational and Applied Mathematics10.1016/j.cam.2019.06.028364:COnline publication date: 15-Jan-2020

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media