[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Unconditional error analysis of the linearized transformed L 1 virtual element method for nonlinear coupled time-fractional Schrödinger equations

Published: 15 March 2025 Publication History

Abstract

This paper constructs a linearized transformed L 1 virtual element method for the generalized nonlinear coupled time-fractional Schrödinger equations. The solutions to such problems typically exhibit singular behavior at the beginning. To avoid this pitfall, we introduce an identical s-fractional differential system derived from a smoothing transformation of variables t = s 1 / α, 0 < α < 1. By utilizing the discrete complementary convolution kernels, we prove the boundedness and error estimates of the solution of time-discrete system. Moreover, the unconditionally optimal error bounds of the proposed fully discrete scheme are derived in L 2-norm without restriction on the grid ratio. Finally, numerical tests on a set of polygonal meshes are presented to verify the theoretical results.

References

[1]
Laskin N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (4–6) (2000) 298–305.
[2]
Naber M., Time fractional Schrödinger equation, J. Math. Phys. 45 (8) (2004) 3339–3352.
[3]
Iomin A., Fractional-time Schrödinger equation: fractional dynamics on a comb, Chaos Solitons Fractals 44 (4–5) (2011) 348–352.
[4]
Wang S., Xu M., Generalized fractional Schrödinger equation with space–time fractional derivatives, J. Math. Phys. 48 (4) (2007).
[5]
Muslih S.I., Agrawal O.P., Baleanu D., A fractional Schrödinger equation and its solution, Internat. J. Theoret. Phys. 49 (2010) 1746–1752.
[6]
Li D., Wang J., Zhang J., Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrödinger equations, SIAM J. Sci. Comput. 39 (6) (2017) A3067–A3088.
[7]
Li M., Wei Y., Niu B., et al., Fast L2-1σ Galerkin FEMs for generalized nonlinear coupled Schrödinger equations with Caputo derivatives, Appl. Math. Comput. 416 (2022).
[8]
Liu J., Wang T., Zhang T., A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrödinger equation, Numer. Algorithms 92 (2) (2023) 1153–1182.
[9]
Qin H., Wu F., Ding D., A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schrödinger equation, Appl. Math. Comput. 412 (2022).
[10]
Qin H., Wu F., Zhou B., Alikhanov linearized galerkin finite element methods for nonlinear time-fractional Schrödinger equation, J. Comput. Math. 41 (6) (2023) 1305–1324.
[11]
Zhang J., Chen H., Sun T., et al., Error analysis of a fully discrete scheme for time fractional Schrödinger equation with initial singularity, Int. J. Comput. Math. 97 (8) (2020) 1636–1647.
[12]
Zhao G., An N., Huang C., Optimal error analysis of the Alikhanov formula for a time-fractional Schrödinger equation, J. Appl. Math. Comput. 69 (1) (2023) 159–170.
[13]
Hu H., Chen Y., Zhou J., Two-grid finite element method on grade meshes for time-fractional nonlinear Schrödinger equation, Numer. Methods Partial Differential Equations 40 (2) (2024).
[14]
Qin H., Li D., Zhang Z., A novel scheme to capture the initial dramatic evolutions of nonlinear subdiffusion equations, J. Sci. Comput. 89 (3) (2021) 65.
[15]
Li D., Sun W., Wu C., A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions, Numer. Math. Theory Methods Appl. 14 (2) (2021) 355–376.
[16]
Han Y., Huang X., Gu W., et al., Linearized transformed L1 finite element methods for semi-linear time-fractional parabolic problems, Appl. Math. Comput. 458 (2023).
[17]
Zhou Y., Li M., Error estimate of a transformed L1 scheme for a multi-term time-fractional diffusion equation by using discrete comparison principle, Math. Comput. Simulation 217 (2024) 395–404.
[18]
She M., Li D., Sun H., A transformed L1 method for solving the multi-term time-fractional diffusion problem, Math. Comput. Simulation 193 (2022) 584–606.
[19]
Yuan W., Li D., Zhang C., Linearized transformed L1 Galerkin FEMs with unconditional convergence for nonlinear time fractional Schrödinger equations, Numer. Math. Theory Methods Appl. 16 (2) (2023).
[20]
Huang D., Huang X., Qin T., et al., A transformed L 1 Legendre-Galerkin spectral method for time fractional Fokker–Planck equations, Netw. Heterog. Media 18 (2) (2023) 799–812.
[21]
Qin H., Chen X., Zhou B., A family of transformed difference schemes for nonlinear time-fractional equations, Fractal Fract. 7 (1) (2023) 96.
[22]
Beirão da Veiga L., Brezzi F., Cangiani A., et al., Basic principles of virtual element methods, Math. Models Method Appl. Sci. 23 (01) (2013) 199–214.
[23]
Vacca G., Beirão da Veiga L., Virtual element methods for parabolic problems on polygonal meshes, Numer. Methods Partial Differential Equations 31 (6) (2015) 2110–2134.
[24]
Beirão da Veiga L., Brezzi F., Marini L.D., et al., The hitchhiker’s guide to the virtual element method, Math. Models Method Appl. Sci. 24 (08) (2014) 1541–1573.
[25]
Adak D., Natarajan E., Kumar S., Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes, Numer. Methods Partial Differential Equations 35 (1) (2019) 222–245.
[26]
Benvenuti E., Chiozzi A., Manzini G., et al., Extended virtual element method for two-dimensional linear elastic fracture, Comput. Methods Appl. Mech. Engrg. 390 (2022).
[27]
Zhang B., Feng M., Virtual element method for two-dimensional linear elasticity problem in mixed weakly symmetric formulation, Appl. Math. Comput. 328 (2018) 1–25.
[28]
Brezzi F., Marini L.D., Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Engrg. 253 (2013) 455–462.
[29]
Ahmad B., Alsaedi A., Brezzi F., et al., Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (3) (2013) 376–391.
[30]
Li M., Zhao J., Wang N., et al., Conforming and nonconforming conservative virtual element methods for nonlinear Schrödinger equation: A unified framework, Comput. Methods Appl. Mech. Engrg. 380 (2021).
[31]
da Veiga L.B., Manzini G., A virtual element method with arbitrary regularity, IMA J. Numer. Anal. 34 (2) (2014) 759–781.
[32]
Liu W., Chen Y., Zhou J., et al., Unconditional error analysis of linearized BDF2 mixed virtual element method for semilinear parabolic problems on polygonal meshes, J. Comput. Appl. Math. 446 (2024).
[33]
Liu W., Chen Y., Gu Q., et al., Virtual element method for nonlinear Sobolev equation on polygonal meshes, Numer. Algorithms 94 (4) (2023) 1731–1761.
[34]
Li M., Zhao J., Huang C., et al., Nonconforming virtual element method for the time fractional reaction–subdiffusion equation with non-smooth data, J. Sci. Comput. 81 (3) (2019) 1823–1859.
[35]
Gu Q., Chen Y., Zhou J., et al., A fast linearized virtual element method on graded meshes for nonlinear time-fractional diffusion equations, Numer. Algorithms (2024) 1–37.
[36]
Guo J., Chen Y., Zhou J., et al., The virtual element method for solving two-dimensional fractional cable equation on general polygonal meshes, Int. J. Comput. Math. 100 (10) (2023) 2026–2046.
[37]
Zhang Y., Feng M., A local projection stabilization virtual element method for the time-fractional Burgers equation with high Reynolds numbers, Appl. Math. Comput. 436 (2023).
[38]
Zhang Y., Feng M., The virtual element method for the time fractional convection diffusion reaction equation with non-smooth data, Comput. Math. Appl. 110 (2022) 1–18.
[39]
Li M., Zhao J., Huang C., et al., Conforming and nonconforming VEMs for the fourth-order reaction–subdiffusion equation: a unified framework, IMA J. Numer. Anal. 42 (3) (2022) 2238–2300.

Index Terms

  1. Unconditional error analysis of the linearized transformed L 1 virtual element method for nonlinear coupled time-fractional Schrödinger equations
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Journal of Computational and Applied Mathematics
            Journal of Computational and Applied Mathematics  Volume 457, Issue C
            Mar 2025
            1225 pages

            Publisher

            Elsevier Science Publishers B. V.

            Netherlands

            Publication History

            Published: 15 March 2025

            Author Tags

            1. Generalized nonlinear coupled TFSEs
            2. Linearized VEM
            3. Variables transformation
            4. Discrete complementary convolution kernels
            5. Optimal error estimates

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 08 Feb 2025

            Other Metrics

            Citations

            View Options

            View options

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media