[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Variational integrators for non-autonomous Lagrangian systems

Published: 01 May 2023 Publication History

Abstract

Numerical methods that preserve geometric invariants of the system, such as energy, momentum or the symplectic form, are called geometric integrators. Variational integrators are an important class of geometric integrators. The general idea for those variational integrators is to discretize Hamilton’s principle rather than the equations of motion in a way that preserves some of the invariants of the original system. In this paper we construct variational integrators with fixed time step for time-dependent Lagrangian systems modelling an important class of autonomous dissipative systems. These integrators are derived via a family of discrete Lagrangian functions each one for a fixed time-step. This allows to recover at each step on the set of discrete sequences the preservation properties of variational integrators for autonomous Lagrangian systems, such as symplecticity or backward error analysis for these systems. We also present a discrete Noether theorem for this class of systems.

References

[1]
Lall S., West M., Discrete variational hamiltonian mechanics, J. Phys. A: Math. Gen. 39 (19) (2006) 5509.
[2]
Marsden J., West M., Discrete mechanics and variational integrators, Acta Numer. 10 (1) (2001) 357–514.
[3]
Hairer E., Lubich C., Wanner G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Science & Business Media, 2006, p. 31.
[4]
Ober-Blöbaum S., Junge O., Marsden J., Discrete mechanics and optimal control: an analysis, ESAIM: Control Optim. Calc. Var. 17 (2) (2011) 322–352.
[5]
Colombo L., Ferraro S., Martín de Diego D., Geometric integrators for higher-order variational systems and their application to optimal control, J. Nonlinear Sci. 26 (6) (2016) 1615–1650. Volume 53(2), (2020) 3348-3353.
[6]
Colombo L., Jiménez F., Martín de Diego D., Variational integrators for mechanical control systems with symmetries, J. Comput. Dyn. 2 (2) (2015) 193–225.
[7]
Leyendecker S., Marsden J., Ortiz M., Variational integrators for constrained dynamical systems, ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.: Appl. Math. Mech. 88 (9) (2008) 677–708.
[8]
Colombo L., Garcia de Marina H., Forced variational integrators for the formation control of multi-agent systems, IEEE Trans. Control Netw. Syst. 8 (3) (2021) 1336–1347.
[9]
Cortes J., Martínez S., Non-holonomic integrators, Nonlinearity 14 (5) (2001) 1365.
[10]
C.M. Campos, A. Mahillo, D. Martín de Diego, A Discrete Variational Derivation of Accelerated Methods in Optimization. To appear in J. Mach. Learn. Res., arXiv preprint arXiv:2106.02700.
[11]
Colombo L., Moreno P., Ye M., Garcia de Marina H., Cao M., Forced variational integrator for distancebased shape control with flocking behavior of multi-agent systems, IFAC-PapersOnLine 53 (2) (2020) 3348–3353.
[12]
Kobilarov M., Marsden J., Discrete geometric optimal control on lie groups, IEEE Trans. Robot. 27 (4) (2011) 641–655.
[13]
Colombo L., Martín de Diego D., Noether symmetries and decay laws in formation control of multi-agent systems. Proceedings of the 7th IFAC workshop on Lagrangian and Hamiltonian methods in nonlinear control, IFAC-Papers OnLine 54 (19) (2021) 76–81.
[14]
Vermeeren M., Bravetti A., Seri M., Contact variational integrators, J. Phys. A 52 (44) (2019).
[15]
Anahory Simoes A., Martín de Diego M., Lainz Valcázar M., de León M., On the geometry of discrete contact mechanics, J. Nonlinear Sci. 31 (3) (2021) 1–30.
[16]
Bravetti A., Seri M., Vermeeren M., Zadra F., Numerical integration in celestial mechanics: a case for contact geometry, Celestial Mech. Dynam. Astronom. 132 (1) (2020) 1–29.
[17]
Anderson B.D., Yu C., Fidan B., Hendrickx J.M., Rigid graph control architectures for autonomous formations, IEEE Control Syst. Mag. 28 (6) (2008) 48–63.
[18]
Colombo L., García de Marina H., A variational integrator for the distance-based formation control of multi-agent systems, IFAC-PapersOnLine 51 (23) (2018) 76–81.
[19]
Abraham R., Marsden J.E., Foundations of Mechanics, second ed., Addison-Wesley, New York, 1978.
[20]
Crampin M., Mestdag T., Anholonomic frames in constrained dynamics, Dyn. Syst. 25 (2010) 159–187.
[21]
Díaz V.A., Martín de Diego D., Generalized variational calculus for continuous and discrete mechanical systems, J. Geom. Mech. 10 (4) (2018) 373–410.
[22]
A.M. Bloch, Nonholonomic mechanics and control, volume 24 of Interdisciplinary Applied Mathematics.
[23]
Sun Z., Mou S., Anderson B.D., Yu Ch., Conservation and decay laws in distributed coordination control systems, Automatica 87 (2018) 1–7.
[24]
Hansen A., A theoretical framework for backward error analysis on manifolds, J. Geom. Mech. 3 (1) (2001) 81.
[25]
Modin K., Soderlind G., Geometric integration of hamiltonian systems perturbed by rayleigh damping, BIT Numer. Math. 51 (4) (2011) 977–1007.
[26]
Reich S., Backward error analysis for numerical integrators, SIAM J. Numer. Anal. 36 (5) (1999) 1549–1570.
[27]
Marrero J.C., Martín de Diego D., Stern A., Symplectic groupoids and discrete constrained Lagrangian mechanics, Discrete Contin. Dyn. Syst. 35 (1) (2015) 367–397.
[28]
Oh K.-K., Park M.-C., Ahn H.-S., A survey of multi-agent formation control, Automatica 53 (2015) 424–440.
[29]
Vermeeren M., Modified equations for variational integrators, Numer. Math. 137 (4) (2017) 1001–1037.
[30]
Hochbruck M., Ostermann A., Exponential integrators, Acta Numer. 19 (2010) 209–286.

Index Terms

  1. Variational integrators for non-autonomous Lagrangian systems
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Journal of Computational and Applied Mathematics
          Journal of Computational and Applied Mathematics  Volume 424, Issue C
          May 2023
          640 pages

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 01 May 2023

          Author Tags

          1. Geometric integration
          2. Variational integrators
          3. Symmetries
          4. Conservation laws
          5. Backward error analysis

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 05 Jan 2025

          Other Metrics

          Citations

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media