[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A reduced-order DG formulation based on POD method for the time-domain Maxwell’s equations in dispersive media

Published: 01 July 2018 Publication History

Abstract

In this work, a proper orthogonal decomposition (POD) method is applied to time-domain Maxwell’s equations coupled to a Drude dispersion model, which are discretized in space by a discontinuous Galerkin (DG) method. An auxiliary differential equation (ADE) method is used to represent the constitutive relation for the dispersive medium. A POD–DGTD formulation with lower dimension and sufficiently high accuracy is established, together with the description of the POD reduced-order basis, its construction from a snapshot set, and its application to the solution of the time-domain Maxwell’s equations. The overall goal is to reduce the computational time while maintaining an acceptable level of accuracy, in order to obtain an efficient time-domain solver to be used as a starting-point for an optimization strategy. We provide results from numerical experiments for two-dimensional problems that illustrate the capabilities of the proposed POD–DGTD formulation and assess its efficiency.

References

[1]
Lanteri S., Scheid C., Convergence of a discontinuous Galerkin scheme for the mixed time-domain Maxwell’s equations in dispersive media, IMA J. Numer. Anal. 33 (2) (2013) 432–459.
[2]
Li J., Error analysis of fully discrete mixed finite element schemes for 3-D Maxwell’s equations in dispersive media, Comput. Methods Appl. Mech. Engrg. 196 (33) (2007) 3081–3094.
[3]
Dvorak S.L., Dudley D.G., Propagation of ultra-wide-band electromagnetic pulses through dispersive media, IEEE Trans. Electromagn. Compat. 37 (2) (1995) 192–200.
[4]
Gedney S.D., Young J.C., Kramer T.C., Roden J.A., A discontinuous Galerkin finite element time-domain method modeling of dispersive media, IEEE Trans. Antennas and Propagation 60 (4) (2012) 1969–1977.
[5]
Liu Q.H., Fan G.-X., Simulations of GPR in dispersive media using a frequency-dependent PSTD algorithm, IEEE Trans. Geosci. Remote Sens. 37 (5) (1999) 2317–2324.
[6]
Yee K.S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagation 14 (3) (1966) 302–307.
[7]
Cohen G., Ferrieres X., Pernet S., A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time domain, J. Comput. Phys. 217 (2) (2006) 340–363.
[8]
Oskooi A.F., Kottke C., Johnson S.G., Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing, Opt. Lett. 34 (18) (2009) 2778–2780.
[9]
Busch K., König M., Niegemann J., Discontinuous Galerkin methods in nanophotonics, Laser Photonics Rev. 5 (6) (2011) 773–809.
[10]
Hesthaven J.S., Warburton T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Springer Science & Business Media, 2007.
[11]
Li L., Lanteri S., Perrussel R., Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2D time-harmonic Maxwell’s equations, COMPEL 32 (3) (2013) 1112–1138.
[12]
Li L., Lanteri S., Perrussel R., A hybridizable discontinuous Galerkin method combined to a schwarz algorithm for the solution of 3D time-harmonic Maxwell’s equation, J. Comput. Phys. 256 (2014) 563–581.
[13]
W.H. Reed, T. Hill, Triangularmesh methodsfor the neutrontransportequation, Los Alamos Report LA-UR-73-479.
[14]
Cockburn B., Shu C.-W., The local discontinuous galerkin method for time-dependent convection–diffusion systems, SIAM J. Numer. Anal. 35 (6) (1998) 2440–2463.
[15]
Arnold D.N., Brezzi F., Cockburn B., Marini L.D., Unified analysis of discontinuous galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (5) (2002) 1749–1779.
[16]
Monk P., Richter G.R., A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media, J. Sci. Comput. 22 (1–3) (2005) 443–477.
[17]
Feng X., Xing Y., Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comp. 82 (283) (2013) 1269–1296.
[18]
Hesthaven J.S., Warburton T., Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations, J. Comput. Phys. 181 (1) (2002) 186–221.
[19]
Fezoui L., Lanteri S., Lohrengel S., Piperno S., Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Math. Model. Numer. Anal. 39 (6) (2005) 1149–1176.
[20]
Fahs H., Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation, Int. J. Numer. Anal. Model. 6 (2) (2009) 193–216.
[21]
Fahs H., Lanteri S., A high-order non-conforming discontinuous Galerkin method for time-domain electromagnetics, J. Comput. Appl. Math. 234 (4) (2010) 1088–1096.
[22]
Taflove A., Hagness S.C., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005.
[23]
Teixeira E., et al., Time-domain finite-difference and finite-element methods for Maxwell equations in complex media, IEEE Trans. Antennas and Propagation 56 (8) (2008) 2150–2166.
[24]
Li J., Chen Y., Analysis of a time-domain finite element method for 3-D Maxwell’s equations in dispersive media, Comput. Methods Appl. Mech. Engrg. 195 (33) (2006) 4220–4229.
[25]
Ji X., Cai W., Zhang P., High-order DGTD methods for dispersive Maxwell’s equations and modelling of silver nanowire coupling, Internat. J. Numer. Methods Engrg. 69 (2) (2007) 308–325.
[26]
Viquerat J., Klemm M., Lanteri S., Scheid C., Analysis of a generalized dispersive model coupled to a DGTD method with application to nanophotonics, SIAM J. Sci. Comput. 39 (3) (2017) A831–A859.
[27]
Léger R., Viquerat J., Durochat C., Scheid C., Lanteri S., A parallel non-conforming multi-element DGTD method for the simulation of electromagnetic wave interaction with metallic nanoparticles, J. Comput. Appl. Math. 270 (2014) 330–342.
[28]
Binion D., Chen X., A Krylov enhanced proper orthogonal decomposition method for efficient nonlinear model reduction, Finite Elem. Anal. Des. 47 (7) (2011) 728–738.
[29]
Kerschen G., Golinval J.-c., Vakakis A.F., Bergman L.A., The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview, Nonlinear Dynam. 41 (1–3) (2005) 147–169.
[30]
Kunisch K., Volkwein S., Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J. Numer. Anal. 40 (2) (2002) 492–515.
[31]
Burkardt J., Gunzburger M., Lee H.-C., POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg. 196 (1) (2006) 337–355.
[32]
Luo Z., Chen J., Sun P., Yang X., Finite element formulation based on proper orthogonal decomposition for parabolic equations, Sci. China Ser. A: Math. 52 (3) (2009) 585–596.
[33]
Kunisch K., Volkwein S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math. 90 (1) (2001) 117–148.
[34]
Schmidthausler D., Clemens M., Low-order electroquasistatic field simulations based on proper orthogonal decomposition, IEEE Trans. Magn. 48 (2) (2012) 567–570.
[35]
Luo Z., Li H., Sun P., A reduced-order Crank-Nicolson finite volume element formulation based on POD method for parabolic equations, Appl. Math. Comput. 219 (11) (2013) 5887–5900.
[36]
Luo Z., Gao J., Xie Z., Reduced-order finite difference extrapolation model based on proper orthogonal decomposition for two-dimensional shallow water equations including sediment concentration, J. Math. Anal. Appl. 429 (2) (2015) 901–923.
[37]
Holmes P., Lumley J.L., Berkooz G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, 1998.
[38]
Fukunaga K., Introduction to Statistical Pattern Recognition, Academic Press, 2013.
[39]
Jolliffe I., Principal Component Analysis, Wiley Online Library, 2002.
[40]
Akman T., Error estimates for space–time discontinuous Galerkin formulation based on proper orthogonal decomposition, Appl. Anal. (2016) 1–22.
[41]
Pereyra V., Kaelin B., Fast wave propagation by model order reduction, Electron. Trans. Numer. Anal. 30 (2008) 406–419.
[42]
Pereyra V., Wave equation simulation using a compressed modeler, Am. J. Comput. Math. 3 (2013) 231–241.
[43]
Mancini R., Volkwein S., An inverse scattering problem for the time-dependent Maxwell equations: nonlinear optimization and model-order reduction, Numer. Linear Algebra Appl. 20 (2013) 689–711.
[44]
Luo Z., Gao J., A POD reduced-order finite difference time-domain extrapolating scheme for the 2D Maxwell equations in lossy medium, J. Math. Anal. Appl. 444 (2016) 433–451.
[45]
Schmitt N., Scheid C., Lanteri S., Moreau A., Viquerat J., A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects, J. Comput. Phys. 316 (2016) 396–415.
[46]
Li L., Lanteri S., Mortensen N.A., Wubs M., A hybridizable discontinuous galerkin method for solving nonlocal optical response models, Comput. Phys. Comm. 219 (2017) 99–107.

Cited By

View all
  • (2023)A proper orthogonal decomposition-compact difference algorithm for plate vibration modelsNumerical Algorithms10.1007/s11075-023-01544-794:3(1489-1518)Online publication date: 1-Nov-2023

Index Terms

  1. A reduced-order DG formulation based on POD method for the time-domain Maxwell’s equations in dispersive media
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Journal of Computational and Applied Mathematics
          Journal of Computational and Applied Mathematics  Volume 336, Issue C
          Jul 2018
          477 pages

          Publisher

          Elsevier Science Publishers B. V.

          Netherlands

          Publication History

          Published: 01 July 2018

          Author Tags

          1. Time-domain Maxwell equations
          2. Dispersive media
          3. Discontinuous Galerkin method
          4. Model order reduction
          5. Proper orthogonal decomposition

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 13 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)A proper orthogonal decomposition-compact difference algorithm for plate vibration modelsNumerical Algorithms10.1007/s11075-023-01544-794:3(1489-1518)Online publication date: 1-Nov-2023

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media