[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

On multiple burst-correcting MDS codes

Published: 15 March 2016 Publication History

Abstract

It is well known that binary random error-correcting MDS codes are trivial. However, the same is not true for burst-correcting codes. We present properties of MDS codes for multiple burst-correcting codes over the binary field generalizing those of random error correcting codes.

References

[1]
E.N. Gilbert, Capacity of a burst-noise channel, Bell Syst. Tech. J., 39 (1960) 1253-1265.
[2]
E.O. Elliott, A model of the switched telephone network for data communications, Bell Syst. Tech. J., 44 (1965) 89-109.
[3]
P. Fire, Sylvania Report RSL-E-2, A Class of Multiple-Error-Correcting Binary Codes for Non-Independent Errors, Sylvania Electronic Defense Laboratory, Reconnaissance Systems Division, Mountain View, California, USA, March 1959.
[4]
T. Kasami, Optimum shortened cyclic codes for burst-error correction, IEEE Trans. Inform. Theory, 9 (1963) 105-109.
[5]
T. Kasami, S. Matoba, Some efficient shortened cyclic codes for burst-error correction, IEEE Trans. Inform. Theory, 10 (1964) 252-253.
[6]
L. Bahl, R. Chien, On Gilbert burst-error-correcting codes, IEEE Trans. Inform. Theory, 15 (1969) 431-433.
[7]
H. Matt, J. Massey, Determining the burst-correcting limit of cyclic codes, IEEE Trans. Inform. Theory, 26 (1980) 289-297.
[8]
H. van Tilborg, An Overview of Recent Results in the Theory of Burst-Correcting Codes, Coding Theory and Applications, in: Ser. Lecture Notes in Computer Science, vol. 388, Springer, Berlin, Heidelberg, 1989, pp. 163-184.
[9]
S. Song, S. Lin, K. Abdel-Ghaffar, Z. Ding, W.H. Fong, M.P.C. Fossorier, Burst decoding of cyclic codes based on circulant parity-check matrices, IEEE Trans. Inform. Theory, 56 (2010) 1038-1047.
[10]
L.J. García Villalba, J.R. Fuentes Cortez, M. Blaum, On the efficiency of shortened cyclic single-burst-correcting codes, IEEE Trans. Inform. Theory, 56 (2010) 3290-3296.
[11]
L.J. García Villalba, J.R. Fuentes Cortez, A.L. Sandoval Orozco, M. Blaum, An efficient algorithm for searching optimal shortened cyclic single-burst-correcting codes, IEEE Commun. Lett, 16 (2012) 89-91.
[12]
S. Vafi, P.H. Dung, Binary burst error correcting cyclic codes designed with the circulant parity check matrix, IEEE Commun. Lett., 16 (2012) 1277-1279.
[13]
I.S. Reed, G. Solomon, Polynomial codes over certain finite fields, J. Soc. Ind. Appl. Math., 8 (1960) 300-304.
[14]
J.J. Stone, Multiple burst error correction, Inf. Control, 4 (1961) 324-331.
[15]
J.J. Stone, Multiple-burst error correction with the Chinese Remainder Theorem, J. Soc. Ind. Appl. Math., 11 (1963) 74-81.
[16]
H. Burton, E.J. Weldon, Cyclic product codes, IEEE Trans. Inform. Theory, 11 (1965) 433-439.
[17]
L.R. Bahl, R.T. Chien, Multiple-burst-error correction by threshold decoding, Inf. Control, 15 (1969) 397-406.
[18]
M. Blaum, L.J. García-Villalba, B. Wilson, S. Yang, On multiple burst-correcting shortened cyclic codes, in: International Symposium on Communication Theory & Applications, Charlotte Mason College, Lake District, UK, 2005.
[19]
S. Lin, D.J. Costello, Error Control Coding, Prentice Hall, 2004.
[20]
Y. Wu, Novel burst error correction algorithms for Reed-Solomon codes, IEEE Trans. Inform. Theory, 58 (2012) 519-529.
[21]
S. Wainberg, J.K. Wolf, Burst decoding of binary block codes on Q-ary output channels, IEEE Trans. Inform. Theory, 18 (1972) 684-686.
[22]
S.H. Reiger, Codes for the correction of clustered errors, IRE Trans. Inform. Theory, 6 (1960) 16-21.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics  Volume 295, Issue C
March 2016
184 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 15 March 2016

Author Tags

  1. Burst of errors
  2. Burst-correcting codes
  3. Error-correcting codes
  4. MDS
  5. Maximum Distance Separable
  6. Multiple burst-correcting codes

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media