[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

The singular dynamic method for constrained second order hyperbolic equations: Application to dynamic contact problems

Published: 01 June 2010 Publication History

Abstract

The purpose of this paper is to present a new family of numerical methods for the approximation of second order hyperbolic partial differential equations submitted to a convex constraint on the solution. The main application is dynamic contact problems. The principle consists in the use of a singular mass matrix obtained by the mean of different discretizations of the solution and of its time derivative. We prove that the semi-discretized problem is well-posed and energy conserving. Numerical experiments show that this is a crucial property to build stable numerical schemes.

References

[1]
H.B. Khenous, Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique, Ph.D. thesis, INSA de Toulouse, France, 2005.
[2]
P. Hauret, Numerical methods for the dynamic analysis of two-scale incompressible nonlinear structures, Thèse de Doctorat, Ecole Polythechnique, France, 2004.
[3]
Hauret, P. and Le Tallec, P., Energy controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput. Methods Appl. Mech. Eng. v195. 4890-4916.
[4]
Schweizerhof, K., Hallquist, J.O. and Stillman, D., Efficiency refinements of contact strategies and algorithms in explicit finite element programming. In: Owen, Onate, Hinton, (Eds.), Computational Plasticity, Pineridge Press. pp. 457-482.
[5]
Carpenter, N.J., Lagrange constraints for transient finite element surface contact. Int. J. Num. Meth. Eng. v32. 103-128.
[6]
Deuflhard, P., Krause, R. and Ertel, S., A Contact-Stabilized Newmark Method for dynamical contact problems. Int. J. Num. Meth. Eng. v73 i9. 1274-1290.
[7]
Hugues, T.J.R., Taylor, R.L., Sackman, J.L., Curnier, A. and Kanok-Nukulchai, W., A finite element method for a class of contact-impact problems. Comput. Methods. Appl. Mech. Eng. v8. 249-276.
[8]
Taylor, R.L. and Papadopoulos, P., On a finite element method for dynamic contact-impact problems. Int. J. Num. Meth. Eng. vvol. 36. 2123-2140.
[9]
Laursen, T.A. and Love, G.R., Improved implicit integrators for transient impact problems-geometric admissibility within the conserving framework. Int. J. Num. Meth. Eng. v53. 245-274.
[10]
Laursen, T.A. and Chawla, V., Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Num. Meth. Eng. v40. 863-886.
[11]
Barboteu, M., An efficient algorithm to solve large non linear elastodynamic problems with contact friction. Bull. Math. Soc. Sci. Math. Roumanie. v48(96) i2. 119-137.
[12]
Khenous, H.B., Laborde, P. and Renard, Y., Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech., A/Solids. v27 i5. 918-932.
[13]
Moreau, J.J., Liaisons unilatérales sans frottement et chocs inélastiques. In: C.R.A.S. série II, vol. 296. pp. 1473-1476.
[14]
Moreau, J.J., Numerical aspects of the sweeping process. Comput. Methods. Appl. Mech. Eng. v177. 329-349.
[15]
Paoli, L., Time discretization of vibro-impact. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. v359. 2405-2428.
[16]
Paoli, L. and Schatzman, M., Approximation et existence en vibro-impact. C. R. Acad. Sci. Paris, Sér. I. v329. 1103-1107.
[17]
Hager, C. and Wohlmuth, B., Analysis of a space-time discretization for dynamic elasticity problems based on mass-free surface elements. SIAM J. Numer. Anal. v47 i3. 1863-1885.
[18]
Deimling, K., Multivalued Differential Equations. 1992. de Gruyter.
[19]
Lebeau, G. and Schatzman, M., A wave problem in a half-space with a unilateral constraint at the boundary. J. Differential Equations. v55. 309-361.
[20]
Kim, J.U., A boundary thin obstacle problem for a wave equation. Comm. Partial Differential Equations. v14 i8-9. 1011-1026.
[21]
Ciarlet, P.G., . In: Studies in Mathematics and its Applications, vol. 4. North Holland.
[22]
Y. Renard, J. Pommier, Getfem ++, An Open Source generic C++ library for finite element methods. http://home.gna.org/getfem.
[23]
Alart, P. and Curnier, A., A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Engng. v92. 353-375.
[24]
Christensen, P.W. and Pang, J.S., Frictional contact algorithms based on semi-smooth Newton methods. In: Appl. Optim, vol. 22. Kluwer. pp. 81-116.
[25]
Khenous, H.B., Pommier, J. and Renard, Y., Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers. Appl. Numer. Math. v56 i2. 163-192.

Cited By

View all
  • (2022)A massless boundary component mode synthesis method for elastodynamic contact problemsComputers and Structures10.1016/j.compstruc.2021.106698260:COnline publication date: 1-Feb-2022
  • (2021)Bi-penalty stabilized technique with predictor–corrector time scheme for contact-impact problems of elastic barsMathematics and Computers in Simulation10.1016/j.matcom.2021.03.023189:C(305-324)Online publication date: 1-Nov-2021
  • (2021)An explicit time-integrator with singular mass for non-smooth dynamicsComputational Mechanics10.1007/s00466-021-02021-568:1(97-112)Online publication date: 1-Jul-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational and Applied Mathematics
Journal of Computational and Applied Mathematics  Volume 234, Issue 3
June, 2010
324 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 June 2010

Author Tags

  1. 35L87
  2. 35Q74
  3. 65M60
  4. 74M15
  5. Constrained equation
  6. Finite element methods
  7. Hyperbolic partial differential equation
  8. Variational inequalities

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2022)A massless boundary component mode synthesis method for elastodynamic contact problemsComputers and Structures10.1016/j.compstruc.2021.106698260:COnline publication date: 1-Feb-2022
  • (2021)Bi-penalty stabilized technique with predictor–corrector time scheme for contact-impact problems of elastic barsMathematics and Computers in Simulation10.1016/j.matcom.2021.03.023189:C(305-324)Online publication date: 1-Nov-2021
  • (2021)An explicit time-integrator with singular mass for non-smooth dynamicsComputational Mechanics10.1007/s00466-021-02021-568:1(97-112)Online publication date: 1-Jul-2021
  • (2016)A robust finite element redistribution approach for elastodynamic contact problemsApplied Numerical Mathematics10.1016/j.apnum.2015.12.004103:C(48-71)Online publication date: 1-May-2016

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media