[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Learning subsurface scattering solutions of tightly-packed granular media using optimal transport

Published: 18 July 2024 Publication History

Abstract

Many materials, such as sand, rice, wheat, or other kinds of seeds, consist of numerous individual grains that determine the visual appearance of these materials. When generating images of these mixtures, the primary challenge is to simulate the interaction of light with each individual grain. While subsurface scattering effects are crucial for producing realistic images, the computation of light transport using standard path tracing methods for each grain can be prohibitively expensive. Although there have been several methods developed to address this issue, they all assume that bounding spheres of individual grains do not intersect. This restriction limits the application of these methods to almost spherical grains. Nonetheless, various grains, such as seeds and rice, are non-spherical, making this assumption lead to impractical stackings in situations involving coarse-grained materials. We address this issue by presenting a subsurface scattering model that utilizes a neural network and is trained using an optimal transport framework. Our model surpasses path tracing approaches conclusively, allowing for efficient rendering of granular mixtures that were previously unfeasible. Additionally, this method can be utilized in large-scale procedural generated scenes based on sphere packings and obtains similar results as previous methods in these cases.

Graphical abstract

Display Omitted

Highlights

Mixtures of non-spherical grains can be rendered efficiently.
Neural network-based subsurface scattering models speed up rendering times.
Optimal transport can be used for stable training of subsurface scattering models.
State-of-the-art grain rendering can be extended by neural network-based approaches.

References

[1]
Moon JT, Walter B, Marschner SR. Rendering discrete random media using precomputed scattering solutions. In: Proceedings of the 18th eurographics conference on rendering techniques. 2007, p. 231–42.
[2]
Meng J., Papas M., Habel R., Dachsbacher C., Marschner S., Gross M.H., Jarosz W., Multi-scale modeling and rendering of granular materials., ACM Trans Graph 34 (4) (2015) 49:1–49:13.
[3]
Müller T., Papas M., Gross M., Jarosz W., Novák J., Efficient rendering of heterogeneous polydisperse granular media, ACM Trans Graph 35 (6) (2016) 1–14.
[4]
Zhang C, Zhao S. Multi-Scale Appearance Modeling of Granular Materials with Continuously Varying Grain Properties. In: EGSR. DL, 2020, p. 25–37.
[5]
Guo J., Hu B., Chen Y., Li Y., Guo Y., Yan L.-Q., Rendering discrete participating media using geometrical optics approximation, Comput Vis Media 8 (3) (2022) 425–444.
[6]
Giusto A., Saija R., Iati M.A., Denti P., Borghese F., Sindoni O.I., Optical properties of high-density dispersions of particles: application to intralipid solutions, Appl Opt 42 (21) (2003) 4375–4380.
[7]
Guérin C.-A., Mallet P., Sentenac A., Effective-medium theory for finite-size aggregates, J Opt Soc Amer A 23 (2) (2006) 349–358.
[8]
Moon J.T., Marschner S.R., Simulating multiple scattering in hair using a photon mapping approach, ACM Trans Graph 25 (3) (2006) 1067–1074.
[9]
Chiang MJ-Y, Bitterli B, Tappan C, Burley B. A practical and controllable hair and fur model for production path tracing. In: ACM SIGGRApH 2015 talks. 2015, p. 1.
[10]
Wei L, Hu L, Kim V, Yumer E, Li H. Real-time hair rendering using sequential adversarial networks. In: Proceedings of the European conference on computer vision. ECCV, 2018, p. 99–116.
[11]
Sun T., Nam G., Aliaga C., Hery C., Ramamoorthi R., Human hair inverse rendering using multi-view photometric data, in: Bousseau A., McGuire M. (Eds.), Eurographics symposium on rendering - DL-only track, The Eurographics Association, ISBN 978-3-03868-157-1, 2021,.
[12]
Michel É., Boubekeur T., Real time multiscale rendering of dense dynamic stackings, in: Computer graphics forum, vol. 39, Wiley Online Library, 2020, pp. 169–179.
[13]
Kajs N., Gjøl M., Gath J., Philippi H., Frisvad J.R., Bærentzen J.A., Rendering glinty granular materials in virtual reality, in: 2022 international conference on artificial reality and telexistence and eurographics symposium on virtual environments, Eurographics Association, 2022.
[14]
Veach E, Guibas LJ. Optimally combining sampling techniques for Monte Carlo rendering. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques. 1995, p. 419–28.
[15]
Jensen H.W., Importance driven path tracing using the photon map, in: Rendering techniques’ 95: proceedings of the eurographics workshop in dublin, Ireland, June 12–14, 1995 6, Springer, 1995, pp. 326–335.
[16]
Vorba J., Karlik O., Šik M., Ritschel T., Křivanek J., On-line learning of parametric mixture models for light transport simulation, ACM Trans Graph 33 (4) (2014) 1–11.
[17]
Reibold F., Hanika J., Jung A., Dachsbacher C., Selective guided sampling with complete light transport paths, ACM Trans Graph 37 (6) (2018) 1–14.
[18]
Müller T., Gross M., Novák J., Practical path guiding for efficient light-transport simulation, in: Computer graphics forum, vol. 36, Wiley Online Library, 2017, pp. 91–100.
[19]
Diolatzis S., Gruson A., Jakob W., Nowrouzezahrai D., Drettakis G., Practical product path guiding using linearly transformed cosines, in: Computer graphics forum, vol. 39, Wiley Online Library, 2020, pp. 23–33.
[20]
Bitterli B., Wyman C., Pharr M., Shirley P., Lefohn A., Jarosz W., Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting, ACM Trans Graph 39 (4) (2020) 148:1–148:17.
[21]
Ouyang Y., Liu S., Kettunen M., Pharr M., Pantaleoni J., ReSTIR GI: Path resampling for real-time path tracing, in: Computer graphics forum, vol. 40, Wiley Online Library, 2021, pp. 17–29.
[22]
Majercik Z, Müller T, Keller A, Nowrouzezahrai D, McGuire M. Dynamic Diffuse Global Illumination Resampling. In: ACM SIGGRApH 2021 talks. 2021, p. 1–2.
[23]
Kallweit S., Müller T., Mcwilliams B., Gross M., Novák J., Deep scattering: Rendering atmospheric clouds with radiance-predicting neural networks, ACM Trans Graph 36 (6) (2017) 1–11.
[24]
Ge L., Wang B., Wang L., Meng X., Holzschuch N., Interactive simulation of scattering effects in participating media using a neural network model, IEEE Trans Vis Comput Graphics 27 (7) (2019) 3123–3134.
[25]
Leonard L., Hoehlein K., Westermann R., Learning multiple-scattering solutions for sphere-tracing of volumetric subsurface effects, in: Computer graphics forum, vol. 40, Wiley Online Library, 2021, pp. 165–178.
[26]
Vicini D., Koltun V., Jakob W., A learned shape-adaptive subsurface scattering model, ACM Trans Graph 38 (4) (2019) 1–15.
[27]
Müller T., Rousselle F., Novák J., Keller A., Real-time neural radiance caching for path tracing, ACM Trans Graph 40 (4) (2021) 1–16.
[28]
Yan L.-Q., Sun W., Jensen H.W., Ramamoorthi R., A BSSRDF model for efficient rendering of fur with global illumination, ACM Trans Graph 36 (6) (2017) 1–13.
[29]
Zhu J., Zhao S., Wang L., Xu Y., Yan L.-Q., Practical level-of-detail aggregation of fur appearance, ACM Trans Graph 41 (4) (2022) 1–17.
[30]
KT A., Jarabo A., Aliaga C., Chiang M.J.-Y., Maury O., Hery C., Narayanan P., Nam G., Accelerating hair rendering by learning high-order scattered radiance, in: Computer graphics forum, vol. 42, Wiley Online Library, 2023.
[31]
Kajiya J.T., Von Herzen B.P., Ray tracing volume densities, ACM SIGGRAPH Comput Graph 18 (3) (1984) 165–174.
[32]
Pharr M., Jakob W., Humphreys G., Physically based rendering: from theory to implementation, Morgan Kaufmann, 2016.
[33]
Kajiya JT. The rendering equation. In: Proceedings of the 13th annual conference on computer graphics and interactive techniques. 1986, p. 143–50.
[34]
Bartell F.O., Dereniak E.L., Wolfe W.L., The theory and measurement of bidirectional reflectance distribution function (BRDF) and bidirectional transmittance distribution function (BTDF), in: Radiation scattering in optical systems, vol. 257, SPIE, 1981, pp. 154–160.
[35]
d’Eon E., Irving G., A quantized-diffusion model for rendering translucent materials, ACM Trans Graph (TOG) 30 (4) (2011) 1–14.
[36]
Habel R., Christensen P.H., Jarosz W., Photon beam diffusion: A hybrid monte carlo method for subsurface scattering, in: Computer graphics forum, vol. 32, Wiley Online Library, 2013, pp. 27–37.
[37]
Haber T, Mertens T, Bekaert P, Van Reeth F. A computational approach to simulate subsurface light diffusion in arbitrarily shaped objects. In: Graphics interface. 2005, p. 79–86.
[38]
Kingma D.P., Welling M., et al., An introduction to variational autoencoders, Found Trends Mach Learn 12 (4) (2019) 307–392.
[39]
Frogner C., Zhang C., Mobahi H., Araya M., Poggio T.A., Learning with a wasserstein loss, Adv Neural Inf Process Syst 28 (2015).
[40]
Solomon J., De Goes F., Peyré G., Cuturi M., Butscher A., Nguyen A., Du T., Guibas L., Convolutional wasserstein distances: Efficient optimal transportation on geometric domains, ACM Trans Graph (ToG) 34 (4) (2015) 1–11.
[41]
Arjovsky M., Chintala S., Bottou L., Wasserstein generative adversarial networks, in: International conference on machine learning, PMLR, 2017, pp. 214–223.
[42]
Kantorovich L.V., On the translocation of masses, J Math Sci 133 (4) (2006) 1381–1382.
[43]
Novák J., Selle A., Jarosz W., Residual ratio tracking for estimating attenuation in participating media, ACM Trans Graph 33 (6) (2014) 179:1–179:11.
[44]
Ren P., Wang J., Gong M., Lin S., Tong X., Guo B., Global illumination with radiance regression functions, ACM Trans Graph 32 (4) (2013) 130:1–130:12.
[45]
Müller T., Evans A., Schied C., Keller A., Instant neural graphics primitives with a multiresolution hash encoding, ACM Trans Graph (ToG) 41 (4) (2022) 1–15.
[46]
Krivánek J., Gautron P., Pattanaik S., Bouatouch K., Radiance caching for efficient global illumination computation, IEEE Trans Vis Comput Graphics 11 (5) (2005) 550–561.
[47]
Mildenhall B., Srinivasan P.P., Tancik M., Barron J.T., Ramamoorthi R., Ng R., Nerf: Representing scenes as neural radiance fields for view synthesis, Commun ACM 65 (1) (2021) 99–106.
[48]
Bonneel N, Van De Panne M, Paris S, Heidrich W. Displacement interpolation using Lagrangian mass transport. In: Proceedings of the 2011 SIGGRApH Asia conference. 2011, p. 1–12.
[49]
Flamary R., Courty N., Gramfort A., Alaya M.Z., Boisbunon A., Chambon S., Chapel L., Corenflos A., Fatras K., Fournier N., Gautheron L., Gayraud N.T., Janati H., Rakotomamonjy A., Redko I., Rolet A., Schutz A., Seguy V., Sutherland D.J., Tavenard R., Tong A., Vayer T., POT: Python optimal transport, J Mach Learn Res 22 (78) (2021) 1–8. URL: http://jmlr.org/papers/v22/20-451.html.
[50]
Bonneel N., Rabin J., Peyré G., Pfister H., Sliced and radon wasserstein barycenters of measures, J Math Imaging Vision 51 (2015) 22–45.
[51]
KT A., Heitz E., Dupuy J., Narayanan P., Bringing linearly transformed cosines to anisotropic GGX, Proc ACM Comput Graph Interact Tech 5 (1) (2022) 1–18.
[52]
Kingma D.P., Ba J., Adam: A method for stochastic optimization, 2014,. arXiv preprint arXiv:1412.6980.
[53]
Dixmier M., Une nouvelle description des empilements aléatoires et des fluides denses, J Physique 39 (8) (1978) 873–895.
[54]
Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L., et al., Pytorch: An imperative style, high-performance deep learning library, Adv Neural Inf Process Syst 32 (2019).
[55]
Park JJ, Florence P, Straub J, Newcombe R, Lovegrove S. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. In: The IEEE conference on computer vision and pattern recognition. CVPR, 2019.
[56]
Parker S.G., Bigler J., Dietrich A., Friedrich H., Hoberock J., Luebke D., McAllister D., McGuire M., Morley K., Robison A., et al., Optix: a general purpose ray tracing engine, Acm Trans Graph (TOG) 29 (4) (2010) 1–13.
[57]
Laine S, Karras T, Aila T. Megakernels considered harmful: Wavefront path tracing on GPUs. In: Proceedings of the 5th high-performance graphics conference. 2013, p. 137–43.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computers and Graphics
Computers and Graphics  Volume 119, Issue C
Apr 2024
407 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 18 July 2024

Author Tags

  1. Rendering
  2. Grain
  3. Granular media
  4. Optimal transport
  5. Neural network
  6. BSSRDF

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media