[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A privacy-aware visual query approach for location-based data

Published: 01 February 2024 Publication History

Abstract

Visual querying of location-based data assists users in expressing query requirements, investigating query results and making inferences. However, directly accessing data records exposes individual location information and may cause privacy issues. Conventional aggregation-based methods can preserve location-relevant privacy but may lead to the loss of detailed information and failure of analysis. Visualization aids users in gaining a deeper comprehension of the query process and the variation of information concerning privacy-preservation. In this paper, we present a privacy-aware visual query approach for location-based data. We propose a graph-based privacy-preserving scheme to protect location privacy in the visualization, and two visual metaphors to enhance understandings of information-variation in the privacy-preserving process. We design and implement a visual interface that supports a progressive process of query conditions specification and query results exploration. Experiments on real-world urban datasets demonstrate that our approach is capable of making a fair balance between location privacy and data analysis.

Graphical abstract

Display Omitted

Highlights

Directly query location data may lead to privacy issues.
Anonymizing data preserves data privacy but limits data utility.
Graph-based anonymization sanitizes data privacy effectively and dynamically.
Interactive visual query interface enables a fair balance between privacy and utility.

References

[1]
Chen W., Huang Z., Wu F., Zhu M., Guan H., Maciejewski R., VAUD: A visual analysis approach for exploring spatio-temporal urban data, IEEE Trans Vis Comput Graphics 24 (9) (2017) 2636–2648.
[2]
Huang Z., Zhao Y., Chen W., Gao S., Yu K., Xu W., Tang M., Zhu M., Xu M., A natural-language-based visual query approach of uncertain human trajectories, IEEE Trans Vis Comput Graphics 26 (1) (2019) 1256–1266.
[3]
Haag F., Krüger R., Ertl T., VESPa: A pattern-based visual query language for event sequences., in: VISIGRAPP (2: IVAPP), 2016, pp. 50–61.
[4]
Andrienko G., Andrienko N., Privacy issues in geospatial visual analytics, in: Advances in location-based services, Springer, 2012, pp. 239–246.
[5]
Ye Y., Zheng Y., Chen Y., Feng J., Xie X., Mining individual life pattern based on location history, in: 2009 Tenth international conference on mobile data management: Systems, services and middleware, IEEE, 2009, pp. 1–10.
[6]
Duckham M., Kulik L., Location privacy and location-aware computing, in: Dynamic and mobile GIS, CRC Press, 2006, pp. 63–80.
[7]
Gedik B., Liu L., Protecting location privacy with personalized k-anonymity: Architecture and algorithms, IEEE Trans Mob Comput 7 (1) (2007) 1–18.
[8]
Monreale A., Andrienko G.L., Andrienko N.V., Giannotti F., Pedreschi D., Rinzivillo S., Wrobel S., Movement data anonymity through generalization., Trans Data Priv 3 (2) (2010) 91–121.
[9]
Lu M., Wang Z., Yuan X., Trajrank: Exploring travel behaviour on a route by trajectory ranking, in: 2015 IEEE Pacific visualization symposium (PacificVis), IEEE, 2015, pp. 311–318.
[10]
Hurter C., Alligier R., Gianazza D., Puechmorel S., Andrienko G., Andrienko N., Wind parameters extraction from aircraft trajectories, Comput Environ Urban Syst 47 (2014) 28–43.
[11]
Anselin L., Spatial econometrics: Methods and models, Springer Science & Business Media, 2013.
[12]
Kinkeldey C., MacEachren A.M., Schiewe J., How to assess visual communication of uncertainty? A systematic review of geospatial uncertainty visualisation user studies, Cartograph J 51 (4) (2014) 372–386.
[13]
Catarci T., Costabile M.F., Levialdi S., Batini C., Visual query systems for databases: A survey, J Vis Lang Comput 8 (2) (1997) 215–260.
[14]
Lloret-Gazo J., A survey on visual query systems in the web era (extended version), 2017, arXiv preprint arXiv:1708.00192.
[15]
Chen W., Guo F., Han D., Pan J., Nie X., Xia J., Zhang X., Structure-based suggestive exploration: a new approach for effective exploration of large networks, IEEE Trans Vis Comput Graph 25 (1) (2018) 555–565.
[16]
Zheng Y., Capra L., Wolfson O., Yang H., Urban computing: concepts, methodologies, and applications, ACM Trans Intell Syst Technol 5 (3) (2014) 1–55.
[17]
Wang F., Chen W., Wu F., Zhao Y., Hong H., Gu T., Wang L., Liang R., Bao H., A visual reasoning approach for data-driven transport assessment on urban roads, in: 2014 IEEE conference on visual analytics science and technology (VAST), IEEE, 2014, pp. 103–112.
[18]
Lu M., Lai C., Ye T., Liang J., Yuan X., Visual analysis of multiple route choices based on general gps trajectories, IEEE Trans Big Data 3 (2) (2017) 234–247.
[19]
Ferreira N., Poco J., Vo H.T., Freire J., Silva C.T., Visual exploration of big spatio-temporal urban data: a study of new york city taxi trips, IEEE Trans Vis Comput Graph 19 (12) (2013) 2149–2158.
[20]
Yu B., Silva C.T., Flowsense: A natural language interface for visual data exploration within a dataflow system, IEEE Trans Vis Comput Graphics 26 (1) (2019) 1–11.
[21]
Choi R.H., Wong R.K., Vxq: A visual query language for xml data, Inf Syst Front 17 (4) (2015) 961–981.
[22]
Deng Z., Weng D., Wu Y., You are experienced: Interactive tour planning with crowdsourcing tour data from web, J Vis 26 (2) (2023) 385–401.
[23]
Zhao W., Wang G., Wang Z., Liu L., Wei X., Wu Y., A uncertainty visual analytics approach for bus travel time, Vis Inform 6 (4) (2022) 1–11.
[24]
Li W, Wang Z, Wang Y, Weng D, Xie L, Chen S, Zhang H, Qu H. Geocamera: Telling stories in geographic visualizations with camera movements. In: Proceedings of the 2023 CHI conference on human factors in computing systems. 2023, p. 1–15.
[25]
Liu H., Chen X., Wang Y., Zhang B., Chen Y., Zhao Y., Zhou F., Visualization and visual analysis of vessel trajectory data: A survey, Vis Inform 5 (4) (2021) 1–10.
[26]
Wang H., Ni Y., Sun L., Chen Y., Xu T., Chen X., Su W., Zhou Z., Hierarchical visualization of geographical areal data with spatial attribute association, Vis Inform 5 (3) (2021) 82–91.
[27]
Zhu M., Chen W., Xia J., Ma Y., Zhang Y., Luo Y., Huang Z., Liu L., Location2vec: a situation-aware representation for visual exploration of urban locations, IEEE Trans Intell Transp Syst 20 (10) (2019) 3981–3990.
[28]
Zhou Z., Meng L., Tang C., Zhao Y., Guo Z., Hu M., Chen W., Visual abstraction of large scale geospatial origin-destination movement data, IEEE Trans Vis Comput Graphics 25 (1) (2018) 43–53.
[29]
Chen S., Yuan X., Wang Z., Guo C., Liang J., Wang Z., Zhang X., Zhang J., Interactive visual discovering of movement patterns from sparsely sampled geo-tagged social media data, IEEE Trans Vis Comput Graph 22 (1) (2015) 270–279.
[30]
Ozer N., Conley C., O’Connell D.H., Gubins T.R., Ginsburg E., Location-based services: time for a privacy check-in, ACLU North Calif (2010).
[31]
Dasgupta A., Kosara R., Adaptive privacy-preserving visualization using parallel coordinates, IEEE Trans Vis Comput Graphics 17 (12) (2011) 2241–2248.
[32]
Sweeney L., K-anonymity: A model for protecting privacy, Int J Uncertain Fuzziness Knowl-Based Syst 10 (05) (2002) 557–570.
[33]
Machanavajjhala A., Kifer D., Gehrke J., Venkitasubramaniam M., L-diversity: Privacy beyond k-anonymity, ACM Trans Knowl Discov Data (TKDD) 1 (1) (2007) 3–es.
[34]
Li N., Li T., Venkatasubramanian S., T-closeness: Privacy beyond k-anonymity and l-diversity, in: 2007 IEEE 23rd international conference on data engineering, IEEE, 2007, pp. 106–115.
[35]
Adrienko N., Adrienko G., Spatial generalization and aggregation of massive movement data, IEEE Trans Vis Comput Graphics 17 (2) (2010) 205–219.
[36]
Archambault D., Hurley N., Visualization of trends in subscriber attributes of communities on mobile telecommunications networks, Soc Netw Anal Min 4 (1) (2014) 205.
[37]
Oksanen J., Bergman C., Sainio J., Westerholm J., Methods for deriving and calibrating privacy-preserving heat maps from mobile sports tracking application data, J Transp Geograph 48 (2015) 135–144.
[38]
Chou J-K, Wang Y, Ma K-L. Privacy preserving event sequence data visualization using a Sankey diagram-like representation. In: SIGGRAPH ASIA 2016 symposium on visualization. 2016, p. 1–8.
[39]
Chou J.-K., Bryan C., Ma K.-L., Privacy preserving visualization for social network data with ontology information, in: 2017 IEEE Pacific visualization symposium (PacificVis), IEEE, 2017, pp. 11–20.
[40]
Wang X., Chou J.-K., Chen W., Guan H., Chen W., Lao T., Ma K.-L., A utility-aware visual approach for anonymizing multi-attribute tabular data, IEEE Trans Vis Comput Graphics 24 (1) (2017) 351–360.
[41]
Wang X., Chen W., Chou J.-K., Bryan C., Guan H., Chen W., Pan R., Ma K.-L., Graphprotector: a visual interface for employing and assessing multiple privacy preserving graph algorithms, IEEE Trans Vis Comput Graphics 25 (1) (2018) 193–203.
[42]
Parent C., Pelekis N., Theodoridis Y., Yan Z., Spaccapietra S., Renso C., Andrienko G., Andrienko N., Bogorny V., Damiani M.L., Semantic trajectories modeling and analysis, ACM Comput Surv 45 (4) (2013) 1–32.
[43]
Aurenhammer F., Voronoi diagrams—a survey of a fundamental geometric data structure, ACM Comput Surv 23 (3) (1991) 345–405.
[44]
Jin F., Hua W., Francia M., Chao P., Orlowska M., Zhou X., A survey and experimental study on privacy-preserving trajectory data publishing, IEEE Trans Knowl Data Eng (2022).
[45]
Moran P.A., Notes on continuous stochastic phenomena, Biometrika 37 (1/2) (1950) 17–23.
[46]
VanDaniker M., Visualizing real-time and archived traffic incident data, in: 2009 IEEE international conference on information reuse & integration, IEEE, 2009, pp. 206–211.
[47]
Deng K., Xie K., Zheng K., Zhou X., Trajectory indexing and retrieval, in: Computing with spatial trajectories, Springer, 2011, pp. 35–60.
[48]
Guttman A. R-trees: A dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD international conference on management of data. 1984, p. 47–57.
[49]
Pfoser D., Jensen C.S., Theodoridis Y., et al., Novel approaches to the indexing of moving object trajectories, in: VLDB, 2000, pp. 395–406.
[50]
Nascimento MA, Silva JR. Towards historical R-trees. In: Proceedings of the 1998 ACM symposium on applied computing. 1998, p. 235–40.

Cited By

View all

Index Terms

  1. A privacy-aware visual query approach for location-based data
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Computers and Graphics
        Computers and Graphics  Volume 115, Issue C
        Oct 2023
        554 pages

        Publisher

        Pergamon Press, Inc.

        United States

        Publication History

        Published: 01 February 2024

        Author Tags

        1. Visual query
        2. Privacy protection
        3. Location-based data
        4. Data privacy

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 21 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media