Robust pencil drawing generation via fast Retinex decomposition
Graphical abstract
Display Omitted
References
[1]
M. Wang, R. Hong, X.-T. Yuan, S. Yan, T.-S. Chua, Movie2Comics: towards a lively video content presentation, IEEE Trans Multimed 14 (3) (2012) 858–870.
[2]
G. Jing, Y. Hu, Y. Guo, Y. Yu, W. Wang, Content-aware video2comics with manga-style layout, IEEE Trans Multimed 17 (12) (2015) 2122–2133.
[3]
Z. Hu, S. Liu, J. Jiang, R. Hong, M. Wang, S. Yan, PicWords: render a picture by packing keywords, IEEE Trans Multimed 16 (4) (2014) 1156–1164.
[4]
L.A. Gatys, A.S. Ecker, M. Bethge, Image style transfer using convolutional neural networks, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2414–2423.
[5]
C. Lu, L. Xu, J. Jia, Combining sketch and tone for pencil drawing production, Proceedings of the symposium on non-photorealistic animation and rendering, Citeseer, 2012, pp. 65–73.
[6]
Y. Li, C. Fang, A. Hertzmann, E. Shechtman, M.-H. Yang, Im2Pencil: controllable pencil illustration from photographs, Proceedings of the IEEE conference on computer vision and pattern recognition, 2019, pp. 1525–1534.
[7]
M. Hata, M. Toyoura, X. Mao, Automatic pencil drawing generation using saliency map, Proceedings of the ACM symposium on applied perception, 2013.
[8]
S. Hao, Y. Guo, R. Hong, M. Wang, Scale-aware spatially guided mapping, IEEE MultiMed 23 (3) (2016) 34–42.
[9]
X. Cai, B. Song, Image-based pencil drawing synthesized using convolutional neural network feature maps, Mach Vis Appl 29 (3) (2018) 503–512.
[10]
Q. Kong, Y. Sheng, G. Zhang, Hybrid noise for LIC-based pencil hatching simulation, Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), IEEE, 2018, pp. 1–6.
[11]
J. Qiu, B. Liu, J. He, C. Liu, Y. Li, Parallel fast pencil drawing generation algorithm based on GPU, IEEE Access 7 (2019) 83543–83555.
[12]
D. Yan, Y. Sheng, X. Mao, Pencil drawing video rendering using convolutional networks, Proceedings of the computer graphics forum, 38, Wiley Online Library, 2019, pp. 91–102.
[13]
N. Inoue, D. Ito, N. Xu, J. Yang, B. Price, T. Yamasaki, Learning to trace: expressive line drawing generation from photographs, Proceedings of the computer graphics forum, 38, Wiley Online Library, 2019, pp. 69–80.
[14]
Zheng Q., Li Z., Bargteil A. Learning to shade hand-drawn sketches. arXiv preprint arXiv:2002118122020;.
[15]
B. Cai, X. Xu, K. Guo, K. Jia, B. Hu, D. Tao, A joint intrinsic-extrinsic prior model for Retinex, Proceedings of the IEEE international conference on computer vision, 2017, pp. 4000–4009.
[16]
J. Xu, Y. Hou, D. Ren, L. Liu, F. Zhu, M. Yu, H. Wang, L. Shao, Star: a structure and texture aware Retinex model, IEEE Trans Image Process 29 (2020) 5022–5037.
[17]
M. Li, J. Liu, W. Yang, X. Sun, Z. Guo, Structure-revealing low-light image enhancement via robust Retinex model, IEEE Trans Image Process 27 (6) (2018) 2828–2841.
[18]
X. Ren, W. Yang, W.-H. Cheng, J. Liu, LR3M: robust low-light enhancement via low-rank regularized Retinex model, IEEE Trans Image Process 29 (2020) 5862–5876.
[19]
X. Guo, Y. Li, H. Ling, Lime: Low-light image enhancement via illumination map estimation, IEEE Trans Image Process 26 (2) (2016) 982–993.
[20]
Q. Zhang, G. Yuan, C. Xiao, L. Zhu, W.-S. Zheng, High-quality exposure correction of underexposed photos, Proceedings of the 26th ACM international conference on multimedia, 2018, pp. 582–590.
[21]
Y. Gao, H.-M. Hu, B. Li, Q. Guo, Naturalness preserved nonuniform illumination estimation for image enhancement based on Retinex, IEEE Trans Multimed 20 (2) (2017) 335–344.
[22]
Wei C., Wang W., Yang W., Liu J. Deep Retinex decomposition for low-light enhancement. arXiv preprint arXiv:1808045602018;.
[23]
Y. Zhang, J. Zhang, X. Guo, Kindling the darkness: a practical low-light image enhancer, Proceedings of the 27th ACM international conference on multimedia, 2019, pp. 1632–1640.
[24]
Y. Wang, Y. Cao, Z.-J. Zha, J. Zhang, Z. Xiong, W. Zhang, F. Wu, Progressive Retinex: mutually reinforced illumination-noise perception network for low-light image enhancement, Proceedings of the 27th ACM international conference on multimedia, 2019, pp. 2015–2023.
[25]
R. Kimmel, M. Elad, D. Shaked, R. Keshet, I. Sobel, A variational framework for Retinex, Int J Comput Vis 52 (1) (2003) 7–23.
[26]
M.K. Ng, W. Wang, A total variation model for Retinex, SIAM J Imaging Sci 4 (1) (2011) 345–365.
[27]
X. Fu, D. Zeng, Y. Huang, X.-P. Zhang, X. Ding, A weighted variational model for simultaneous reflectance and illumination estimation, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 2782–2790.
[28]
X. Fu, D. Zeng, Y. Huang, X. Ding, X.-P. Zhang, A variational framework for single low light image enhancement using bright channel prior, Proceedings of the 2013 IEEE global conference on signal and information processing, IEEE, 2013, pp. 1085–1088.
[29]
S. Boyd, N. Parikh, E. Chu, Distributed optimization and statistical learning via the alternating direction method of multipliers, Now Publishers Inc, 2011.
[30]
S. Park, B. Moon, S. Ko, S. Yu, J. Paik, Low-light image restoration using bright channel prior-based variational Retinex model, EURASIP J Image Video Process 2017 (1) (2017) 1–11.
[31]
Z. Liang, J. Xu, D. Zhang, Z. Cao, L. Zhang, A hybrid l1-l0 layer decomposition model for tone mapping, Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4758–4766.
[32]
M. Li, Z. Lin, R. Mech, E. Yumer, D. Ramanan, Photo-sketching: Inferring contour drawings from images, Proceedings of the 2019 IEEE winter conference on applications of computer vision (WACV), IEEE, 2019, pp. 1403–1412.
Index Terms
- Robust pencil drawing generation via fast Retinex decomposition
Index terms have been assigned to the content through auto-classification.
Recommendations
Enhancing pencil drawing patterns via using semantic information
AbstractPencil drawing is recognized as a typical non-photorealistic visual art form. It is attractive to automatically generate high-quality pencil drawings from real-world photographs. Traditional model-based methods are highlighted in their ...
A Novel Method for Pencil Drawing Generation in Non-Photo-Realistic Rendering
PCM '08: Proceedings of the 9th Pacific Rim Conference on Multimedia: Advances in Multimedia Information ProcessingThis paper puts forward a novel method for automatically generating a pencil drawing from a real 2D color image in non-photo-realistic rendering. First, the edge of the color image is detected by Sobel operator. Next, the color image is sharpened by ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Elsevier Ltd.
Publisher
Pergamon Press, Inc.
United States
Publication History
Published: 01 June 2021
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 14 Jan 2025