[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

An integrative approach predicted co-expression sub-networks regulating properties of stem cells and differentiation

Published: 01 October 2016 Publication History

Abstract

Display Omitted Seven genes are predicted contributing to precise hESCs-transcription-network.FGF2 helps in stemness and promotes differentiation forming different sub-networks.FGF2 modulates ECM helping in cell proliferation of hESCs and migration of Fib.Identified three sub-networks of Fib differentiation via TGF-β signaling. The differentiation of human Embryonic Stem Cells (hESCs) is accompanied by the formation of different intermediary cells, gradually losing its stemness and acquiring differentiation. The precise mechanisms underlying hESCs integrity and its differentiation into fibroblast (Fib) are still elusive. Here, we aimed to assess important genes and co-expression sub-networks responsible for stemness, early differentiation of hESCs into embryoid bodies (EBs) and its lineage specification into Fibs. To achieve this, we compared transcriptional profiles of hESCs-EBs and EBs-Fibs and obtained differentially expressed genes (DEGs) exclusive to hESCs-EBs (early differentiation), EBs-Fibs (late differentiation) and common DEGs in hESCs-EBs and EBs-Fibs. Then, we performed gene set enrichment analysis (GSEA) followed by overrepresentation study and identified key genes for each gene category. The regulations of these genes were studied by integrating ChIP-Seq data of core transcription factors (TFs) and histone methylation marks in hESCs. Finally, we identified co-expression sub-networks from key genes of each gene category using k-clique sub-network extraction method. Our study predicted seven genes edicting core stemness properties forming a co-expression network. From the pathway analysis of sub-networks of hESCs-EBs, we hypothesize that FGF2 is contributing to pluripotent transcription network of hESCs in association with DNMT3B and JARID2 thereby facilitating cell proliferation. On the contrary, FGF2 is found to promote cell migration in Fibs along with DDR2, CAV1, DAB2, and PARVA. Moreover, our study identified three k-clique sub-networks regulating TGF-β signaling pathway thereby promoting EBs to Fibs differentiation by: (i) modulating extracellular matrix involving ITGB1, TGFB1I1 and GBP1, (ii) regulating cell cycle remodeling involving CDKN1A, JUNB and DUSP1 and (iii) helping in epithelial to mesenchymal transition (EMT) involving THBS1, INHBA and LOX. This study put forward the unexplored genes and co-expression sub-networks regulating stemness and different stages of differentiation of hESCs which will undoubtedly add to the comprehensive understanding of hESCs biology.

References

[1]
K. Abe, H. Niwa, K. Iwase, M. Takiguchi, M. Mori, S.I. Abe, K.I. Yamamura, Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies, Exp. Cell Res., 229 (1996) 27-34.
[2]
B. Adamcsek, G. Palla, I.J. Farkas, I. Derenyi, T. Vicsek, CFinder: locating cliques and overlapping modules in biological networks, Bioinformatics, 22 (2006) 1021-1023.
[3]
D. Anastassiou, V. Rumjantseva, W. Cheng, J. Huang, P.D. Canoll, D.J. Yamashiro, J.J. Kandel, Human cancer cells express Slug-based epithelial-mesenchymal transition gene expression signature obtained in vivo, BMC Cancer, 11 (2011) 529.
[4]
F. Anokye-Danso, C.M. Trivedi, D. Juhr, M. Gupta, Z. Cui, Y. Tian, Y. Zhang, W. Yang, P.J. Gruber, J.A. Epstein, E.E. Morrisey, Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency, Cell Stem Cell, 8 (2011) 376-388.
[5]
I. Ben-Porath, M.W. Thomson, V.J. Carey, R. Ge, G.W. Bell, A. Regev, R.A. Weinberg, An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors, Nat. Genet., 40 (2008) 499-507.
[6]
B.A. Benayoun, E.A. Pollina, D. Ucar, S. Mahmoudi, K. Karra, E.D. Wong, K. Devarajan, A.C. Daugherty, A.B. Kundaje, E. Mancini, B.C. Hitz, R. Gupta, T.A. Rando, J.C. Baker, M.P. Snyder, J.M. Cherry, A. Brunet, H3K4me3 breadth is linked to cell identity and transcriptional consistency, Cell, 158 (2014) 673-688.
[7]
A.L. Brunner, D.S. Johnson, S.W. Kim, A. Valouev, T.E. Reddy, N.F. Neff, E. Anton, C. Medina, L. Nguyen, E. Chiao, C.B. Oyolu, G.P. Schroth, D.M. Absher, J.C. Baker, R.M. Myers, Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver, Genome Res., 19 (2009) 1044-1056.
[8]
S. Camolotto, A. Racca, V. Rena, R. Nores, L.C. Patrito, S. Genti-Raimondi, G.M. Panzetta-Dutari, Expression and transcriptional regulation of individual pregnancy-specific glycoprotein genes in differentiating trophoblast cells, Placenta, 31 (2010) 312-319.
[9]
S. Chaudhury, E.L. Aurbach, V. Sharma, P. Blandino, C.A. Turner, S.J. Watson, H. Akil, FGF2 is a target and a trigger of epigenetic mechanisms associated with differences in emotionality: partnership with H3K9me3, Proc. Natl. Acad. Sci. U. S. A., 111 (2014) 11834-11839.
[10]
P.Y. Chen, S. Feng, J.W. Joo, S.E. Jacobsen, M. Pellegrini, A comparative analysis of DNA methylation across human embryonic stem cell lines, Genome Biol., 12 (2011) R62.
[11]
J.G. Cockburn, D.S. Richardson, T.S. Gujral, L.M. Mulligan, RET-mediated cell adhesion and migration require multiple integrin subunits, J. Clin. Endocrinol. Metab., 95 (2010) E342-E346.
[12]
J.F. Conklin, J. Baker, J. Sage, The RB family is required for the self-renewal and survival of human embryonic stem cells, Nat. Commun., 3 (2012) 1244.
[13]
I. Derenyi, G. Palla, T. Vicsek, Clique percolation in random networks, Phys. Rev. Lett., 94 (2005) 160202.
[14]
ENCODE Project Consortium, An integrated encyclopedia of DNA elements in the human genome, Nature, 489 (2012) 57-74.
[15]
A. Golebiewska, S.P. Atkinson, M. Lako, L. Armstrong, Epigenetic landscaping during hESC differentiation to neural cells, Stem Cells, 27 (2009) 1298-1308.
[16]
D.W. Han, N. Tapia, A. Hermann, K. Hemmer, S. Hoing, M.J. Arauzo-Bravo, H. Zaehres, G. Wu, S. Frank, S. Moritz, B. Greber, J.H. Yang, H.T. Lee, J.C. Schwamborn, A. Storch, H.R. Scholer, Direct reprogramming of fibroblasts into neural stem cells by defined factors, Cell Stem Cell, 10 (2012) 465-472.
[17]
M.F. Henriette, P. Gabant, P.L. Dreze, C. Szpirer, J. Szpirer, Negative regulation of the alpha-foetoprotein gene in fibroblasts: identification and characterization of cis and trans elements, Folia Biol. (Praha), 43 (1997) 5-13.
[18]
W. Huang da, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 4 (2009) 44-57.
[19]
W. Huang, R. Loganantharaj, B. Schroeder, D. Fargo, L. Li, PAVIS: a tool for peak annotation and visualization, Bioinformatics, 29 (2013) 3097-3099.
[20]
A. Jayachandran, M. Anaka, P. Prithviraj, C. Hudson, S.J. McKeown, P.H. Lo, L.J. Vella, C.R. Goding, J. Cebon, A. Behren, Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma, Oncotarget, 5 (2014) 5782-5797.
[21]
L.A. Jolly, V. Taylor, S.A. Wood, USP9X enhances the polarity and self-renewal of embryonic stem cell-derived neural progenitors, Mol. Biol. Cell, 20 (2009) 2015-2029.
[22]
A. Kamburov, K. Pentchev, H. Galicka, C. Wierling, H. Lehrach, R. Herwig, ConsensusPathDB: toward a more complete picture of cell biology, Nucleic Acids Res., 39 (2011) D712-717.
[23]
K. Kandasamy, S.S. Mohan, R. Raju, S. Keerthikumar, G.S. Kumar, A.K. Venugopal, D. Telikicherla, J.D. Navarro, S. Mathivanan, C. Pecquet, S.K. Gollapudi, S.G. Tattikota, S. Mohan, H. Padhukasahasram, Y. Subbannayya, R. Goel, H.K. Jacob, J. Zhong, R. Sekhar, V. Nanjappa, L. Balakrishnan, R. Subbaiah, Y.L. Ramachandra, B.A. Rahiman, T.S. Prasad, J.X. Lin, J.C. Houtman, S. Desiderio, J.C. Renauld, S.N. Constantinescu, O. Ohara, T. Hirano, M. Kubo, S. Singh, P. Khatri, S. Draghici, G.D. Bader, C. Sander, W.J. Leonard, A. Pandey, NetPath: a public resource of curated signal transduction pathways, Genome Biol., 11 (2010) R3.
[24]
M. Kanehisa, S. Goto, KEGG: kyoto encyclopedia of genes and genomes, Nucleic Acids Res., 28 (2000) 27-30.
[25]
H. Kasashima, M. Yashiro, H. Kinoshita, T. Fukuoka, T. Morisaki, G. Masuda, K. Sakurai, N. Kubo, M. Ohira, K. Hirakawa, Lysyl oxidase is associated with the epithelial-mesenchymal transition of gastric cancer cells in hypoxia, Gastric Cancer, 19 (2016) 431-442.
[26]
S. Kellner, N. Kikyo, Transcriptional regulation of the Oct4 gene, a master gene for pluripotency, Histol. Histopathol., 25 (2010) 405-412.
[27]
M.L. Khoo, L.R. McQuade, M.S. Smith, J.G. Lees, K.S. Sidhu, B.E. Tuch, Growth and differentiation of embryoid bodies derived from human embryonic stem cells: effect of glucose and basic fibroblast growth factor, Biol. Reprod., 73 (2005) 1147-1156.
[28]
F.K. Kidwai, H. Liu, W.S. Toh, X. Fu, D.S. Jokhun, M.M. Movahednia, M. Li, Y. Zou, C.A. Squier, T.T. Phan, T. Cao, Differentiation of human embryonic stem cells into clinically amenable keratinocytes in an autogenic environment, J. Invest. Dermatol., 133 (2013) 618-628.
[29]
J. Kim, S.H. Orkin, Embryonic stem cell-specific signatures in cancer: insights into genomic regulatory networks and implications for medicine, Genome Med., 3 (2011) 75.
[30]
Y.S. Kim, B.R. Yi, N.H. Kim, K.C. Choi, Role of the epithelial-mesenchymal transition and its effects on embryonic stem cells, Exp. Mol. Med., 46 (2014) e108.
[31]
H. Kurosawa, Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells, J. Biosci. Bioeng., 103 (2007) 389-398.
[32]
M. Kutmon, A. Riutta, N. Nunes, K. Hanspers, E.L. Willighagen, A. Bohler, J. Melius, A. Waagmeester, S.R. Sinha, R. Miller, S.L. Coort, E. Cirillo, B. Smeets, C.T. Evelo, A.R. Pico, WikiPathways: capturing the full diversity of pathway knowledge, Nucleic Acids Res., 44 (2016) D488-D494.
[33]
D. Landeira, S. Sauer, R. Poot, M. Dvorkina, L. Mazzarella, H.F. Jorgensen, C.F. Pereira, M. Leleu, F.M. Piccolo, M. Spivakov, E. Brookes, A. Pombo, C. Fisher, W.C. Skarnes, T. Snoek, K. Bezstarosti, J. Demmers, R.J. Klose, M. Casanova, L. Tavares, N. Brockdorff, M. Merkenschlager, A.G. Fisher, Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators, Nat. Cell Biol., 12 (2010) 618-624.
[34]
D. Landeira, H. Bagci, A.R. Malinowski, K.E. Brown, J. Soza-Ried, A. Feytout, Z. Webster, E. Ndjetehe, I. Cantone, H.G. Asenjo, N. Brockdorff, T. Carroll, M. Merkenschlager, A.G. Fisher, Jarid2 coordinates nanog expression and PCP/Wnt signaling required for efficient ESC differentiation and early embryo development, Cell Rep., 12 (2015) 573-586.
[35]
B. Langmead, S.L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, 9 (2012) 357-359.
[36]
R. Leinonen, H. Sugawara, M. Shumway, The sequence read archive, Nucleic Acids Res., 39 (2011) D19-21.
[37]
H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, The sequence Alignment/Map format and SAMtools, Bioinformatics, 25 (2009) 2078-2079.
[38]
Y.X. Liu, J. Wang, J. Guo, J. Wu, H.B. Lieberman, Y. Yin, DUSP1 is controlled by p53 during the cellular response to oxidative stress, Mol. Cancer Res., 6 (2008) 624-633.
[39]
V.V. Lunyak, M.G. Rosenfeld, Epigenetic regulation of stem cell fate, Hum. Mol. Genet., 17 (2008) R28-R36.
[40]
A. Marson, S.S. Levine, M.F. Cole, G.M. Frampton, T. Brambrink, S. Johnstone, M.G. Guenther, W.K. Johnston, M. Wernig, J. Newman, J.M. Calabrese, L.M. Dennis, T.L. Volkert, S. Gupta, J. Love, N. Hannett, P.A. Sharp, D.P. Bartel, R. Jaenisch, R.A. Young, Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells, Cell, 134 (2008) 521-533.
[41]
M. Milacic, R. Haw, K. Rothfels, G. Wu, D. Croft, H. Hermjakob, P. D'Eustachio, L. Stein, Annotating cancer variants and anti-cancer therapeutics in reactome, Cancers (Basel), 4 (2012) 1180-1211.
[42]
R. Mjelle, S.A. Hegre, P.A. Aas, G. Slupphaug, F. Drablos, P. Saetrom, H.E. Krokan, Cell cycle regulation of human DNA repair and chromatin remodeling genes, DNA Repair (Amst.), 30 (2015) 53-67.
[43]
I. Neganova, M. Lako, G1 to S phase cell cycle transition in somatic and embryonic stem cells, J. Anat., 213 (2008) 30-44.
[44]
G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature, 435 (2005) 814-818.
[45]
A.C. Racca, S.A. Camolotto, M.E. Ridano, J.L. Bocco, S. Genti-Raimondi, G.M. Panzetta-Dutari, Kruppel-like factor 6 expression changes during trophoblast syncytialization and transactivates sshCG and PSG placental genes, PLoS One, 6 (2011) e22438.
[46]
M. Rao, Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells, Dev. Biol., 275 (2004) 269-286.
[47]
M. Reppel, C. Boettinger, J. Hescheler, Beta-adrenergic and muscarinic modulation of human embryonic stem cell-derived cardiomyocytes, Cell. Physiol. Biochem., 14 (2004) 187-196.
[48]
M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo, J.P. Mesirov, GenePattern 2.0, Nat. Genet., 38 (2006) 500-501.
[49]
R.P. Schneider, I. Garrobo, M. Foronda, J.A. Palacios, R.M. Marion, I. Flores, S. Ortega, M.A. Blasco, TRF1 is a stem cell marker and is essential for the generation of induced pluripotent stem cells, Nat. Commun., 4 (2013) 1946.
[50]
T.C. Schulz, G.M. Palmarini, S.A. Noggle, D.A. Weiler, M.M. Mitalipova, B.G. Condie, Directed neuronal differentiation of human embryonic stem cells, BMC Neurosci., 4 (2003) 27.
[51]
H. Segev, D. Kenyagin-Karsenti, B. Fishman, S. Gerecht-Nir, A. Ziskind, M. Amit, R. Coleman, J. Itskovitz-Eldor, Molecular analysis of cardiomyocytes derived from human embryonic stem cells, Dev. Growth Differ., 47 (2005) 295-306.
[52]
A. Shahi, J.H. Lee, Y. Kang, S.H. Lee, J.W. Hyun, I.Y. Chang, J.Y. Jun, H.J. You, Mismatch-repair protein MSH6 is associated with Ku70 and regulates DNA double-strand break repair, Nucleic Acids Res., 39 (2011) 2130-2143.
[53]
P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13 (2003) 2498-2504.
[54]
M.Y. Son, B. Seol, Y.M. Han, Y.S. Cho, Comparative receptor tyrosine kinase profiling identifies a novel role for AXL in human stem cell pluripotency, Hum. Mol. Genet., 23 (2014) 1802-1816.
[55]
M.R. Song, A. Ghosh, FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation, Nat. Neurosci., 7 (2004) 229-235.
[56]
A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A., 102 (2005) 15545-15550.
[57]
D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. Minguez, T. Doerks, M. Stark, J. Muller, P. Bork, L.J. Jensen, C. von Mering, The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored, Nucleic Acids Res., 39 (2011) D561-D568.
[58]
K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, 131 (2007) 861-872.
[59]
P. Voigt, W.W. Tee, D. Reinberg, A double take on bivalent promoters, Genes Dev., 27 (2013) 1318-1338.
[60]
L. Wang, P. Menendez, F. Shojaei, L. Li, F. Mazurier, J.E. Dick, C. Cerdan, K. Levac, M. Bhatia, Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression, J. Exp. Med., 201 (2005) 1603-1614.
[61]
Z. Wang, E. Oron, B. Nelson, S. Razis, N. Ivanova, Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells, Cell Stem Cell, 10 (2012) 440-454.
[62]
D. Warde-Farley, S.L. Donaldson, O. Comes, K. Zuberi, R. Badrawi, P. Chao, M. Franz, C. Grouios, F. Kazi, C.T. Lopes, A. Maitland, S. Mostafavi, J. Montojo, Q. Shao, G. Wright, G.D. Bader, Q. Morris, The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function, Nucleic Acids Res., 38 (2010) W214-W220.
[63]
R.C. Wong, S. Pollan, H. Fong, A. Ibrahim, E.L. Smith, M. Ho, A.L. Laslett, P.J. Donovan, A novel role for an RNA polymerase III subunit POLR3G in regulating pluripotency in human embryonic stem cells, Stem Cells, 29 (2011) 1517-1527.
[64]
H. Wu, Y.E. Sun, Epigenetic regulation of stem cell differentiation, Pediatr. Res., 59 (2006) 21R-25R.
[65]
M. Yamaji, J. Ueda, K. Hayashi, H. Ohta, Y. Yabuta, K. Kurimoto, R. Nakato, Y. Yamada, K. Shirahige, M. Saitou, PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells, Cell Stem Cell, 12 (2013) 368-382.
[66]
J. Yu, M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J.L. Frane, S. Tian, J. Nie, G.A. Jonsdottir, V. Ruotti, R. Stewart, I.I. Slukvin, J.A. Thomson, Induced pluripotent stem cell lines derived from human somatic cells, Science, 318 (2007) 1917-1920.
[67]
Y. Zhang, T. Liu, C.A. Meyer, J. Eeckhoute, D.S. Johnson, B.E. Bernstein, C. Nusbaum, R.M. Myers, M. Brown, W. Li, X.S. Liu, Model-based analysis of chIP-Seq (MACS), Genome Biol., 9 (2008) R137.
[68]
Z.N. Zhang, S.K. Chung, Z. Xu, Y. Xu, Oct4 maintains the pluripotency of human embryonic stem cells by inactivating p53 through Sirt1-mediated deacetylation, Stem Cells, 32 (2014) 157-165.
[69]
P. Zhang, J.Y. Kang, L.T. Gou, J. Wang, Y. Xue, G. Skogerboe, P. Dai, D.W. Huang, R. Chen, X.D. Fu, M.F. Liu, S. He, MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes, Cell Res., 25 (2015) 193-207.
  1. An integrative approach predicted co-expression sub-networks regulating properties of stem cells and differentiation

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Computational Biology and Chemistry
    Computational Biology and Chemistry  Volume 64, Issue C
    October 2016
    431 pages

    Publisher

    Elsevier Science Publishers B. V.

    Netherlands

    Publication History

    Published: 01 October 2016

    Author Tags

    1. Co-expression network
    2. GSEA
    3. Microarray
    4. Stem cells
    5. k-clique sub-network

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 23 Dec 2024

    Other Metrics

    Citations

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media