[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
review-article

A review of convolutional neural network based methods for medical image classification

Published: 20 February 2025 Publication History

Abstract

This study systematically reviews CNN-based medical image classification methods. We surveyed 149 of the latest and most important papers published to date and conducted an in-depth analysis of the methods used therein. Based on the selected literature, we organized this review systematically. First, the development and evolution of CNN in the field of medical image classification are analyzed. Subsequently, we provide an in-depth overview of the main techniques of CNN applied to medical image classification, which is also the current research focus in this field, including data preprocessing, transfer learning, CNN architectures, and explainability, and their role in improving classification accuracy and efficiency. In addition, this overview summarizes the main public datasets for various diseases. Although CNN has great potential in medical image classification tasks and has achieved good results, clinical application is still difficult. Therefore, we conclude by discussing the main challenges faced by CNNs in medical image analysis and pointing out future research directions to address these challenges. This review will help researchers with their future studies and can promote the successful integration of deep learning into clinical practice and smart medical systems.

Highlights

This study systematically reviews CNN-based medical image classification methods.
This study surveyed 149 papers published to date and conducted an in-depth analysis of the methods used therein.
This study provides an in-depth overview of the main techniques of CNN applied to medical image classification.
In addition, this overview summarizes the main public datasets for various diseases.

References

[1]
G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A. Van Der Laak, B. Van Ginneken, C.I. Sánchez, A survey on deep learning in medical image analysis, Med. Image Anal. 42 (2017) 60–88.
[2]
K. Muhammad, S. Khan, J. Del Ser, V.H.C. de Albuquerque, Deep learning for multigrade brain tumor classification in smart healthcare systems: a prospective survey, IEEE Transact. Neural Networks Learn. Syst. 32 (2) (2021) 507–522.
[3]
M.M. Adnan, M.S.M. Rahim, A.R. Khan, A. Alkhayyat, F.S. Alamri, T. Saba, S.A. Bahaj, Automated image annotation with novel features based on deep ResNet50-SLT, IEEE Access (2023).
[4]
N. Dong, Q.Y. Feng, M.D. Zhai, J.F. Chang, X.M. Mai, A novel feature fusion based deep learning framework for white blood cell classification, J. Ambient Intell. Hum. Comput. (2022).
[5]
M. Micucci, A. Iula, Recent advances in machine learning applied to ultrasound imaging, Electronics 11 (11) (2022) 1800.
[6]
S.S. Yadav, S.M. Jadhav, Deep convolutional neural network based medical image classification for disease diagnosis, Journal of Big Data 6 (1) (2019).
[7]
T. Mahmood, A. Rehman, T. Saba, L. Nadeem, S.A.O. Bahaj, Recent advancements and future prospects in active deep learning for medical image segmentation and classification, IEEE Access (2023).
[8]
Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, M.S. Lew, Deep learning for visual understanding: a review, Neurocomputing 187 (2016) 27–48.
[9]
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.
[10]
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012).
[11]
K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014, arXiv preprint arXiv:1409.1556.
[12]
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
[13]
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[14]
G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
[15]
A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv Preprint arXiv:1704.04861, 2017.
[16]
M. Tan, Q. Le Efficientnet, Rethinking model scaling for convolutional neural networks, in: International Conference on Machine Learning, PMLR, 2019.
[17]
N. Subramanian, O. Elharrouss, S. Al-Maadeed, M. Chowdhury, A review of deep learning-based detection methods for COVID-19, Comput. Biol. Med. (2022) 143.
[18]
R. Kumar, P. Kumbharkar, S. Vanam, S. Sharma, Medical images classification using deep learning: a survey, Multimed. Tool. Appl. (2023).
[19]
H. Hassan, Z.Y. Ren, H.S. Zhao, S.J. Huang, D. Li, S.H. Xiang, Y. Kang, S.F. Chen, B.D. Huang, Review and classification of AI-enabled COVID-19 CT imaging models based on computer vision tasks, Comput. Biol. Med. 141 (2022).
[20]
T. Majtner and E.S. Nadimi. Comparison of Deep Learning-Based Recognition Techniques for Medical and Biomedical Images.
[21]
M.J. Page, J.E. McKenzie, P.M. Bossuyt, I. Boutron, T.C. Hoffmann, C.D. Mulrow, L. Shamseer, J.M. Tetzlaff, E.A. Akl, S.E. Brennan, The PRISMA 2020 statement: an updated guideline for reporting systematic reviews, Br. Med. J. 372 (2021).
[22]
V. Narayan, P.K. Mall, A. Alkhayyat, K. Abhishek, S. Kumar, P. Pandey, Enhance-net: an approach to Boost the performance of deep learning model based on real-time medical images, J. Sens. 2023 (2023).
[23]
X. Qi, L.G. Brown, D.J. Foran, J. Nosher, I. Hacihaliloglu, Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network, Int. J. Comput. Assist. Radiol. Surg. 16 (2) (2021) 197–206.
[24]
I. Avci, A. Alzabaq, A new respiratory diseases detection model in chest X-ray images using CNN, Trait. Du. Signal 40 (1) (2023) 145–155.
[25]
A. Souid, N. Sakli, H. Sakli, Classification and predictions of lung diseases from chest X-rays using MobileNet V2, Applied Sciences-Basel 11 (6) (2021).
[26]
A.A. Reshi, F. Rustam, A. Mehmood, A. Alhossan, Z. Alrabiah, A. Ahmad, H. Alsuwailem, G.S. Choi, An efficient CNN model for COVID-19 disease detection based on X-ray image classification, Complexity (2021) 2021.
[27]
A. Bria, C. Marrocco, F. Tortorella, Addressing class imbalance in deep learning for small lesion detection on medical images, Comput. Biol. Med. 120 (2020).
[28]
H. Mzoughi, I. Njeh, A. Wali, M. Ben Slima, A. BenHamida, C. Mhiri, K. Ben Mahfoudhe, Deep multi-scale 3D convolutional neural network (CNN) for MRI gliomas brain tumor classification, J. Digit. Imag. 33 (4) (2020) 903–915.
[29]
H. Sun, X.X. Zeng, T. Xu, G. Peng, Y.T. Ma, Computer-aided diagnosis in histopathological images of the endometrium using a convolutional neural network and attention mechanisms, Ieee Journal of Biomedical and Health Informatics 24 (6) (2020) 1664–1676.
[30]
S.P. Singh, L.P. Wang, S. Gupta, B. Gulyas, P. Padmanabhan, Shallow 3D CNN for detecting acute brain hemorrhage from medical imaging sensors, IEEE Sensor. J. 21 (13) (2021) 14290–14299.
[31]
J. Ker, S.P. Singh, Y.Q. Bai, J. Rao, T. Lim, L.P. Wang, Image thresholding improves 3-dimensional convolutional neural network diagnosis of different acute brain hemorrhages on computed tomography scans, Sensors 19 (9) (2019).
[32]
A. Gautam, B. Raman, Towards effective classification of brain hemorrhagic and ischemic stroke using CNN, Biomed. Signal Process Control 63 (2021).
[33]
Y. Zhang, C. Huneau, J. Idier, D. Mateus, Ultrasound image reconstruction with denoising diffusion restoration models, in: Deep Generative Models, Springer Nature Switzerland, Cham, 2024.
[34]
D.J. Hemanth, O. Deperlioglu, U. Kose, An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network, Neural Comput. Appl. 32 (3) (2020) 707–721.
[35]
M.A. Al-masni, D.H. Kim, T.S. Kim, Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification, Comput. Methods Progr. Biomed. (2020) 190.
[36]
A.M. Dawud, K. Yurtkan, H. Oztoprak, Application of deep learning in neuroradiology: brain haemorrhage classification using transfer learning, Comput. Intell. Neurosci. 2019 (2019).
[37]
P.K. Das, B. Sahoo, S. Meher, An efficient detection and classification of acute leukemia using transfer learning and orthogonal softmax layer-based model, IEEE ACM Trans. Comput. Biol. Bioinf 20 (3) (2023) 1817–1828.
[38]
K.C. Kamal, Z.D. Yin, M.Y. Wu, Z.L. Wu, Evaluation of deep learning-based approaches for COVID-19 classification based on chest X-ray images, Signal Image and Video Processing 15 (5) (2021) 959–966.
[39]
I.D. Apostolopoulos, T.A. Mpesiana, Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks, Physical and Engineering Sciences in Medicine 43 (2) (2020) 635–640.
[40]
Y.X. Tang, Y.B. Tang, Y.F. Peng, K. Yan, M. Bagheri, B.A. Redd, C.J. Brandon, Z.Y. Lu, M. Han, J. Xiao, R.M. Summers, Automated abnormality classification of chest radiographs using deep convolutional neural networks, Npj Digital Medicine 3 (1) (2020).
[41]
L. Gaur, U. Bhatia, N.Z. Jhanjhi, G. Muhammad, M. Masud, Medical image-based detection of COVID-19 using deep convolution neural networks, Multimed. Syst. 29 (3) (2023) 1729–1738.
[42]
T. Zebin, S. Rezvy, COVID-19 detection and disease progression visualization: deep learning on chest X-rays for classification and coarse localization, Appl. Intell. 51 (2) (2021) 1010–1021.
[43]
V. Chouhan, S.K. Singh, A. Khamparia, D. Gupta, P. Tiwari, C. Moreira, R. Damasevicius, V.H.C. de Albuquerque, A novel transfer learning based approach for pneumonia detection in chest X-ray images, Applied Sciences-Basel 10 (2) (2020).
[44]
A. Hernández, A. Panizo and D. Camacho. An Ensemble Algorithm Based on Deep Learning for Tuberculosis Classification.
[45]
I.D. Apostolopoulos, S.I. Aznaouridis, M.A. Tzani, Extracting possibly representative COVID-19 biomarkers from X-ray images with deep learning approach and image data related to pulmonary diseases, J. Med. Biol. Eng. 40 (3) (2020) 462–469.
[46]
G. Marques, D. Agarwal, I.D. Díez, Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network, Appl. Soft Comput. 96 (2020).
[47]
A. Moussaid, N. Zrira, I. Benmiloud, Z. Farahat, Y. Karmoun, Y. Benzidia, S. Mouline, B. El Abdi, J.E. Bourkadi, N. Ngote, On the implementation of a post-pandemic deep learning algorithm based on a hybrid CT-scan/X-ray images classification applied to pneumonia categories, Healthcare 11 (5) (2023).
[48]
M.J. Horry, S. Chakraborty, M. Paul, A. Ulhaq, B. Pradhan, M. Saha, N. Shukla, COVID-19 detection through transfer learning using multimodal imaging data, IEEE Access 8 (2020) 149808–149824.
[49]
M. Talo, O. Yildirim, U.B. Baloglu, G. Aydin, U.R. Acharya, Convolutional neural networks for multi-class brain disease detection using MRI images, Comput. Med. Imag. Graph. 78 (2019).
[50]
Ö. Polat, C. Güngen, Classification of brain tumors from MR images using deep transfer learning, J. Supercomput. 77 (7) (2021) 7236–7252.
[51]
N. Noreen, S. Palaniappan, A. Qayyum, I. Ahmad, M. Imran, M. Shoaib, A deep learning model based on concatenation approach for the diagnosis of brain tumor, IEEE Access 8 (2020) 55135–55144.
[52]
M. Sajjad, S. Khan, K. Muhammad, W.Q. Wu, A. Ullah, S.W. Baik, Multi-grade brain tumor classification using deep CNN with extensive data augmentation, Journal of Computational Science 30 (2019) 174–182.
[53]
Z.N.K. Swati, Q.H. Zhao, M. Kabir, F. Ali, Z. Ali, S. Ahmed, J.F. Lu, Brain tumor classification for MR images using transfer learning and fine-tuning, Comput. Med. Imag. Graph. 75 (2019) 34–46.
[54]
S. Deepak, P.M. Ameer, Brain tumor classification using deep CNN features via transfer learning, Comput. Biol. Med. 111 (2019).
[55]
H. Aljuaid, N. Alturki, N. Alsubaie, L. Cavallaro, A. Liotta, Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning, Comput. Methods Progr. Biomed. (2022) 223.
[56]
T. Choudhary, V. Mishra, A. Goswami, J. Sarangapani, A transfer learning with structured filter pruning approach for improved breast cancer classification on point-of-care devices, Comput. Biol. Med. 134 (2021).
[57]
R.O. Ogundokun, S. Misra, A.O. Akinrotimi, H. Ogul, MobileNet-SVM: a lightweight deep transfer learning model to diagnose BCH scans for IoMT-based imaging sensors, Sensors 23 (2) (2023).
[58]
M. Humayun, M.I. Khalil, S.N. Almuayqil, N.Z. Jhanjhi, Framework for detecting breast cancer risk presence using deep learning, Electronics 12 (2) (2023).
[59]
R.V.M. da Nóbrega, P.P. Rebouças, M.B. Rodrigues, S.P.P. da Silva, C. Dourado, V.H.C. de Albuquerque, Lung nodule malignancy classification in chest computed tomography images using transfer learning and convolutional neural networks, Neural Comput. Appl. 32 (15) (2020) 11065–11082.
[60]
H. Ko, H. Chung, W.S. Kang, K.W. Kim, Y. Shin, S.J. Kang, J.H. Lee, Y.J. Kim, N.Y. Kim, H. Jung, J. Lee, COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: model development and validation, J. Med. Internet Res. 22 (6) (2020).
[61]
A. Abhishek, R.K. Jha, R. Sinha, K. Jha, Automated detection and classification of leukemia on a subject-independent test dataset using deep transfer learning supported by Grad-CAM visualization, Biomed. Signal Process Control 83 (2023).
[62]
A. Vijayalakshmi, B.R. Kanna, Deep learning approach to detect malaria from microscopic images, Multimed. Tool. Appl. 79 (21–22) (2020) 15297–15317.
[63]
Z.T. Cao, L.X. Duan, G.W. Yang, T. Yue, Q. Chen, An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures, BMC Med. Imag. 19 (2019).
[64]
H. Tariq, M. Rashid, A. Javed, E. Zafar, S.S. Alotaibi, M.Y.I. Zia, Performance analysis of deep-neural-network-based automatic diagnosis of diabetic retinopathy, Sensors 22 (1) (2022).
[65]
A. Mahbod, G. Schaefer, C.L. Wang, G. Dorffner, R. Ecker, I. Ellinger, Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification, Comput. Methods Progr. Biomed. (2020) 193.
[66]
T. Alsubait, T. Sindi, H. Alhakami, Classification of the human protein atlas single cell using deep learning, Applied Sciences-Basel 12 (22) (2022).
[67]
P. Marcelino, Transfer learning from pre-trained models, Data Sci. 10 (2018) 23.
[68]
C. Li, Y.Y. Yang, H. Liang, B.Y. Wu, Transfer learning for establishment of recognition of COVID-19 on CT imaging using small-sized training datasets, Knowl. Base Syst. (2021) 218.
[69]
G.B. Liang, L.X. Zheng, A transfer learning method with deep residual network for pediatric pneumonia diagnosis, Comput. Methods Progr. Biomed. (2020) 187.
[70]
A.H. Alharbi, H.A.H. Mahmoud, Pneumonia transfer learning deep learning model from segmented X-rays, Healthcare 10 (6) (2022).
[71]
M. Varma, M. Lu, R. Gardner, J. Dunnmon, N. Khandwala, P. Rajpurkar, J. Long, C. Beaulieu, K. Shpanskaya, F.F. Li, M.P. Lungren, B.N. Patel, Automated abnormality detection in lower extremity radiographs using deep learning, Nat. Mach. Intell. 1 (12) (2019) 578–583.
[72]
M.E.H. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.A. Kadir, Z. Bin Mahbub, K.R. Islam, M.S. Khan, A. Iqbal, N. Al Emadi, M.B. Reaz, M.T. Islam, Can AI help in screening viral and COVID-19 pneumonia?, IEEE Access 8 (2020) 132665–132676.
[73]
Z.Y. Lu, Y.Z. Bai, Y. Chen, C.Q. Su, S.S. Lu, T.M. Zhan, X.N. Hong, S.H. Wang, The classification of gliomas based on a Pyramid dilated convolution resnet model, Pattern Recogn. Lett. 133 (2020) 173–179.
[74]
D. Sarwinda, R.H. Paradisa, A. Bustamam and P. Anggia. Deep Learning in Image Classification Using Residual Network (ResNet) Variants for Detection of Colorectal Cancer.
[75]
S. Karakanis, G. Leontidis, Lightweight deep learning models for detecting COVID-19 from chest X-ray images, Comput. Biol. Med. 130 (2021).
[76]
J.L. Cheng, S.W. Tian, L. Yu, C.R. Gao, X.J. Kang, X. Ma, W.D. Wu, S.J. Liu, H.C. Lu, ResGANet: residual group attention network for medical image classification and segmentation, Med. Image Anal. 76 (2022).
[77]
J. Wang, Y.M. Bao, Y.F. Wen, H.B. Lu, H. Luo, Y.F. Xiang, X.M. Li, C. Liu, D.H. Qian, Prior-attention residual learning for more discriminative COVID-19 screening in CT images, IEEE Trans. Med. Imag. 39 (8) (2020) 2572–2583.
[78]
X.L. Luo, W. Wang, Y. Xu, Z.H. Lai, X.P. Jin, B.B. Zhang, D.V. Zhang, A deep convolutional neural network for diabetic retinopathy detection via mining local and long-range dependence, Caai Transactions on Intelligence Technology (2023).
[79]
N. Dong, L. Zhao, C.H. Wu, J.F. Chang, Inception v3 based cervical cell classification combined with artificially extracted features, Appl. Soft Comput. 93 (2020).
[80]
Y.X. Li, X.P. Xie, L.L. Shen, S.X. Liu, Reverse active learning based atrous DenseNet for pathological image classification, BMC Bioinf. 20 (1) (2019).
[81]
G.Z. Zhao, S. Shao, M. Yu, Key techniques for classification of thorax diseases based on deep learning, Int. J. Imag. Syst. Technol. 32 (6) (2022) 2184–2197.
[82]
H. Munusamy, K.J. Muthukumar, S. Gnanaprakasam, T.R. Shanmugakani, A. Sekar, FractalCovNet architecture for COVID-19 chest X-ray image classification and CT-scan image segmentation, Biocybern. Biomed. Eng. 41 (3) (2021) 1025–1038.
[83]
H.Z. Zhu, R. Rohling and S. Salcudean. Jointly Boosting Saliency Prediction and Disease Classification on Chest X-Ray Images with Multi-Task UNet.
[84]
S. Akter, F. Shamrat, S. Chakraborty, A. Karim, S. Azam, COVID-19 detection using deep learning algorithm on chest X-ray images, Biology-Basel 10 (11) (2021).
[85]
P. Lankireddy, C. Sindhura and S. Gorthi. A New Lightweight Architecture and a Class Imbalance Aware Loss Function for Multi-Label Classification of Intracranial Hemorrhages.
[86]
M. Polsinelli, L. Cinque, G. Placidi, A light CNN for detecting COVID-19 from CT scans of the chest, Pattern Recogn. Lett. 140 (2020) 95–100.
[87]
Y.T. Zhang, H.M. Li, J. Du, J. Qin, T.F. Wang, Y. Chen, B. Liu, W.W. Gao, G.L. Ma, B.Y. Lei, 3D multi-attention guided multi-task learning network for automatic gastric tumor segmentation and lymph node classification, IEEE Trans. Med. Imag. 40 (6) (2021) 1618–1631.
[88]
Y.Y. Baydilli, Ü. Atila, Classification of white blood cells using capsule networks, Comput. Med. Imag. Graph. 80 (2020).
[89]
D. Singh, V. Kumar, V. Yadav, M. Kaur, Deep neural network-based screening model for COVID-19-infected patients using chest X-ray images, Int. J. Pattern Recogn. Artif. Intell. 35 (3) (2021).
[90]
M.Z. Alom, C. Yakopcic, S. Nasrin, T.M. Taha, V.K. Asari, Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network, J. Digit. Imag. 32 (4) (2019) 605–617.
[91]
A. Abbas, M.M. Abdelsamea, M.M. Gaber, Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network, Appl. Intell. 51 (2) (2021) 854–864.
[92]
S. Liang, H.X. Liu, Y. Gu, X.H. Guo, H.J. Li, L. Li, Z.Y. Wu, M.Y. Liu, L.X. Tao, Fast automated detection of COVID-19 from medical images using convolutional neural networks, Commun. Biol. 4 (1) (2021).
[93]
M.M. Eltoukhy, K.M. Hosny, M.A. Kassem, Classification of multiclass histopathological breast images using residual deep learning, Comput. Intell. Neurosci. 2022 (2022).
[94]
H. Malik, T. Anees, M. Din, A. Naeem, CDC_Net: multi-classification convolutional neural network model for detection of COVID-19, pneumothorax, pneumonia, lung Cancer, and tuberculosis using chest X-rays, Multimed. Tool. Appl. 82 (9) (2023) 13855–13880.
[95]
H.D. Zhu, J. Wang, S.H. Wang, R. Raman, J.M. Górriz, Y.D. Zhang, An evolutionary attention-based network for medical image classification, Int. J. Neural Syst. 33 (3) (2023).
[96]
X.Y. Zhang, W. Li, C.Z. Gao, Y. Yang, K. Chang, Hyperspectral pathology image classification using dimension-driven multi-path attention residual network, Expert Syst. Appl. (2023) 230.
[97]
S. Das, K. Kharbanda, M. Suchetha, R. Raman, D.E. Dhas, Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy, Biomed. Signal Process Control 68 (2021).
[98]
D.J.B. Saini, R. Sivakami, R. Venkatesh, C.S. Raghava, P.S. Dwarkanath, T.M.K. Anwer, L.K. Smirani, S.H. Ahammad, U. Pamula, M.A. Hossain, A.N.Z. Rashed, Convolution neural network model for predicting various lesion-based diseases in diabetic macula edema in optical coherence tomography images, Biomed. Signal Process Control 86 (2023).
[99]
L. Li, M. Xu, X.F. Wang, L. Jiang, H.R. Liu and I.C. Soc. Attention Based Glaucoma Detection: A Large-Scale Database and CNN Model.
[100]
M.N. Hossen, V. Panneerselvam, D. Koundal, K. Ahmed, F.M. Bui, S.M. Ibrahim, Federated machine learning for detection of skin diseases and enhancement of Internet of medical Things (IoMT) security, Ieee Journal of Biomedical and Health Informatics 27 (2) (2023) 835–841.
[101]
S. Sreelakshmi, V.S. Anoop, A deep convolutional neural network model for medical data classification from computed tomography images, Expet Syst. (2023).
[102]
T. Elsken, J.H. Metzen, F. Hutter, Neural architecture search: a survey, J. Mach. Learn. Res. 20 (1) (2019) 1997–2017.
[103]
B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning, arXiv preprint arXiv:1611.01578 (2016).
[104]
O. Eminaga, M. Abbas, J.N. Shen, M. Laurie, J.D. Brooks, J.C. Liao, D.L. Rubin, PlexusNet: a neural network architectural concept for medical image classification, Comput. Biol. Med. 154 (2023).
[105]
S.J. Xu, H. Wu, R.F. Bie, CXNet-m1: anomaly detection on chest X-rays with image-based deep learning, IEEE Access 7 (2019) 4466–4477.
[106]
M. Nahiduzzaman, M.R. Islam, R. Hassan, ChestX-Ray6: prediction of multiple diseases including COVID-19 from chest X-ray images using convolutional neural network, Expert Syst. Appl. (2023) 211.
[107]
Z. Alyafeai, L. Ghouti, A fully-automated deep learning pipeline for cervical cancer classification, Expert Syst. Appl. 141 (2020).
[108]
M. Umer, I. Ashraf, S. Ullah, A. Mehmood, G.S. Choi, COVINet: a convolutional neural network approach for predicting COVID-19 from chest X-ray images, J. Ambient Intell. Hum. Comput. 13 (1) (2022) 535–547.
[109]
M.M. Badza, M.C. Barjaktarovic, Classification of brain tumors from MRI images using a convolutional neural network, Applied Sciences-Basel 10 (6) (2020).
[110]
N. Sengar, R.C. Joshi, M.K. Dutta, R. Burget, EyeDeep-Net: a multi-class diagnosis of retinal diseases using deep neural network, Neural Comput. Appl. 35 (14) (2023) 10551–10571.
[111]
H. Bonab, F. Can, Less is more: a comprehensive framework for the number of components of ensemble classifiers, IEEE Transact. Neural Networks Learn. Syst. 30 (9) (2019) 2735–2745.
[112]
W. Zhang, J. Zhong, S.J. Yang, Z.T. Gao, J.J. Hu, Y.Y. Chen, Z. Yi, Automated identification and grading system of diabetic retinopathy using deep neural networks, Knowl. Base Syst. 175 (2019) 12–25.
[113]
P.K. Das, S. Meher, An efficient deep convolutional neural network based detection and classification of acute lymphoblastic leukemia, Expert Syst. Appl. 183 (2021).
[114]
M. Rahimzadeh, A. Attar, S.M. Sakhaei, A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset, Biomed. Signal Process Control 68 (2021).
[115]
T. Nazir, M. Nawaz, J. Rashid, R. Mahum, M. Masood, A. Mehmood, F. Ali, J. Kim, H.Y. Kwon, A. Hussain, Detection of diabetic eye disease from retinal images using a deep learning based CenterNet model, Sensors 21 (16) (2021).
[116]
C.C. Ukwuoma, D.S. Cai, M.B. Bin Heyat, O. Bamisile, H. Adun, Z. Al-Huda, M.A. Al-antari, Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images, Journal of King Saud University-Computer and Information Sciences 35 (7) (2023).
[117]
A.K. Das, S. Ghosh, S. Thunder, R. Dutta, S. Agarwal, A. Chakrabarti, Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network, Pattern Anal. Appl. 24 (3) (2021) 1111–1124.
[118]
M.E. Karar, E. El-Din Hemdan, M.A. Shouman, Cascaded deep learning classifiers for computer-aided diagnosis of COVID-19 and pneumonia diseases in X-ray scans, Complex & Intelligent Systems 7 (1) (2021) 235–247.
[119]
H. Lee, S. Yune, M. Mansouri, M. Kim, S.H. Tajmir, C.E. Guerrieri, S.A. Ebert, S.R. Pomerantz, J.M. Romero, S. Kamalian, R.G. Gonzalez, M.H. Lev, S. Do, An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets, Nat. Biomed. Eng. 3 (3) (2019) 173-+.
[120]
S. Qummar, F.G. Khan, S. Shah, A. Khan, S. Shamshirband, Z.U. Rehman, I.A. Khan, W. Jadoon, A deep learning ensemble approach for diabetic retinopathy detection, IEEE Access 7 (2019) 150530–150539.
[121]
P. Gifani, A. Shalbaf, M. Vafaeezadeh, Automated detection of COVID-19 using ensemble of transfer learning with deep convolutional neural network based on CT scans, Int. J. Comput. Assist. Radiol. Surg. 16 (1) (2021) 115–123.
[122]
S.M. Lee, N. Kim, Deep learning model ensemble for the accuracy of classification degenerative arthritis, Cmc-Computers Materials & Continua 75 (1) (2023) 1981–1994.
[123]
J.P. Zhang, Y.T. Xie, Q. Wu, Y. Xia, Medical image classification using synergic deep learning, Med. Image Anal. 54 (2019) 10–19.
[124]
X. Xu, L.L. Zhang, J.Q. Li, Y. Guan, L. Zhang, A hybrid global-local representation CNN model for automatic cataract grading, Ieee Journal of Biomedical and Health Informatics 24 (2) (2020) 556–567.
[125]
F.P. An, Medical image classification algorithm based on weight initialization-sliding window fusion convolutional neural network, Complexity (2019) 2019.
[126]
N. Ahmad, S. Asghar, S.A. Gillani, Transfer learning-assisted multi-resolution breast cancer histopathological images classification, Vis. Comput. 38 (8) (2022) 2751–2770.
[127]
P.K. Das, B. Nayak, S. Meher, A lightweight deep learning system for automatic detection of blood cancer, Measurement (2022) 191.
[128]
S. Deepak, P.M. Ameer, Automated categorization of brain tumor from MRI using CNN features and SVM, J. Ambient Intell. Hum. Comput. 12 (8) (2021) 8357–8369.
[129]
P. Kedia Anjum, R. Katarya, CoVNet-19: a Deep Learning model for the detection and analysis of COVID-19 patients, Appl. Soft Comput. (2021) 104.
[130]
A.D.Y. Jia, B.Z.Y. Li, C.C.W. Zhang, Detection of cervical cancer cells based on strong feature CNN-SVM network, Neurocomputing 411 (2020) 112–127.
[131]
G.S. Nijaguna, J.A. Babu, B.D. Parameshachari, R.P. de Prado, J. Frnda, Quantum Fruit fly algorithm and ResNet50-VGG16 for medical diagnosis, Appl. Soft Comput. (2023) 136.
[132]
M.A. Khan, M. Alhaisoni, U. Tariq, N. Hussain, A. Majid, R. Damasevicius, R. Maskeliunas, COVID-19 case recognition from chest CT images by deep learning, entropy-controlled firefly optimization, and parallel feature fusion, Sensors 21 (21) (2021).
[133]
W.Q. Jin, S.Q. Dong, C.Z. Dong, X.D. Ye, Hybrid ensemble model for differential diagnosis between COVID-19 and common viral pneumonia by chest X-ray radiograph, Comput. Biol. Med. 131 (2021).
[134]
Y.H. Li, N.N. Yeh, S.J. Chen, Y.C. Chung, Computer-Assisted diagnosis for diabetic retinopathy based on fundus images using deep convolutional neural network, Mobile Inf. Syst. (2019) 2019.
[135]
G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing 70 (1–3) (2006) 489–501.
[136]
M. Nahiduzzaman, M.R. Islam, M.O.F. Goni, M.S. Anower, M. Ahsan, J. Haider, M. Kowalski, Diabetic retinopathy identification using parallel convolutional neural network based feature extractor and ELM classifier, Expert Syst. Appl. 217 (2023).
[137]
M. Nahiduzzaman, M.O.F. Goni, R. Hassan, M.R. Islam, M.K. Syfullah, S.M. Shahriar, M.S. Anower, M. Ahsan, J. Haider, M. Kowalski, Parallel CNN-ELM: a multiclass classification of chest X-ray images to identify seventeen lung diseases including COVID-19, Expert Syst. Appl. 229 (2023).
[138]
M. Nahiduzzaman, M.O.F. Goni, M.R. Islam, A. Sayeed, M.S. Anower, M. Ahsan, J. Haider, M. Kowalski, Detection of various lung diseases including COVID-19 using extreme learning machine algorithm based on the features extracted from a lightweight CNN architecture, Biocybern. Biomed. Eng. 43 (3) (2023) 528–550.
[139]
M.A. Khan, N. Hussain, A. Majid, M. Alhaisoni, S.A.C. Bukhari, S. Kadry, Y. Nam, Y.D. Zhang, Classification of positive COVID-19 CT scans using deep learning, Cmc-Computers Materials & Continua 66 (3) (2021) 2923–2938.
[140]
P.I.R. Jenifer, S. Kannan, Deep learning with optimal hierarchical spiking neural network for medical image classification, Comput. Syst. Sci. Eng. 44 (2) (2023) 1081–1097.
[141]
H. Naeem, A.A. Bin-Salem, A CNN-LSTM network with multi-level feature extraction-based approach for automated detection of coronavirus from CT scan and X-ray images, Appl. Soft Comput. (2021) 113.
[142]
F. Alrowais, K. Mahmood, S.S. Alotaibi, M.A. Hamza, R. Marzouk, A. Mohamed, Laryngeal cancer detection and classification using Aquila optimization algorithm with deep learning on throat region images, IEEE Access 11 (2023) 115306–115315.
[143]
S. Nawaz, S. Rasheed, W. Sami, L. Hussain, A. Aldweesh, E.T. Eldin, U.A. Salaria, M.S. Khan, Deep learning ResNet101 deep features of portable chest X-ray accurately classify COVID-19 lung infection, Cmc-Computers Materials & Continua 75 (3) (2023) 5213–5228.
[144]
A. Bhattacharyya, D. Bhaik, S. Kumar, P. Thakur, R. Sharma, R.B. Pachori, A deep learning based approach for automatic detection of COVID-19 cases using chest X-ray images, Biomed. Signal Process Control 71 (2022).
[145]
H. Zerouaoui, A. Idri, Deep hybrid architectures for binary classification of medical breast cancer images, Biomed. Signal Process Control 71 (2022).
[146]
S.H. Kassani, P.H. Kassani, M.J. Wesolowski, K.A. Schneider, R. Deters, Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: a machine learning based approach, Biocybern. Biomed. Eng. 41 (3) (2021) 867–879.
[147]
A. Shamsi, H. Asgharnezhad, S.S. Jokandan, A. Khosravi, P.M. Kebria, D. Nahavandi, S. Nahavandi, D. Srinivasan, An uncertainty-aware transfer learning-based framework for COVID-19 diagnosis, IEEE Transact. Neural Networks Learn. Syst. 32 (4) (2021) 1408–1417.
[148]
T. Saba, A.S. Mohamed, M. El-Affendi, J. Amin, M. Sharif, Brain tumor detection using fusion of hand crafted and deep learning features, Cognit. Syst. Res. 59 (2020) 221–230.
[149]
M. Khened, V.A. Kollerathu, G. Krishnamurthi, Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers, Med. Image Anal. 51 (2019) 21–45.
[150]
M. Wozniak, J. Silka, M. Wieczorek, Deep neural network correlation learning mechanism for CT brain tumor detection, Neural Comput. Appl. 35 (20) (2023) 14611–14626.
[151]
O.N. Manzari, H. Ahmadabadi, H. Kashiani, S.B. Shokouhi, A. Ayatollahi, MedViT: a robust vision transformer for generalized medical image classification, Comput. Biol. Med. 157 (2023).
[152]
M.M. Srikantamurthy, V.P.S. Rallabandi, D.B. Dudekula, S. Natarajan, J. Park, Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning, BMC Med. Imag. 23 (1) (2023).
[153]
N. Zhang, Y.X. Cai, Y.Y. Wang, Y.T. Tian, X.L. Wang, B. Badami, Skin cancer diagnosis based on optimized convolutional neural network, Artif. Intell. Med. 102 (2020).
[154]
A.K. Anaraki, M. Ayati, F. Kazemi, Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms, Biocybern. Biomed. Eng. 39 (1) (2019) 63–74.
[155]
L.T. Duong, N.H. Le, T.B. Tran, V.M. Ngo, P.T. Nguyen, Detection of tuberculosis from chest X-ray images: boosting the performance with vision transformer and transfer learning, Expert Syst. Appl. 184 (2021).
[156]
I. Budhiraja Deepanshi, D. Garg, N. Kumar, Choquet integral based deep learning model for COVID-19 diagnosis using eXplainable AI for NG-IoT models, Comput. Commun. 212 (2023) 227–238.
[157]
R. Hashemzehi, S.J.S. Mahdavi, M. Kheirabadi, S.R. Kamel, Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE, Biocybern. Biomed. Eng. 40 (3) (2020) 1225–1232.
[158]
S.J. Fang, J. Fu, C. Du, T. Lin, Y. Yan, Identifying laryngeal neoplasms in laryngoscope images via deep learning based object detection: a case study on an extremely small data set, Irbm 44 (6) (2023).
[159]
C. Barata, M.E. Celebi, J.S. Marques, Explainable skin lesion diagnosis using taxonomies, Pattern Recogn. 110 (2021).
[160]
Y.F. Jin, H.J. Lu, W.J. Zhu, W.L. Huo, Deep learning based classification of multi-label chest X-ray images via dual-weighted metric loss, Comput. Biol. Med. (2023) 157.
[161]
X.L. Fan, X.F. Feng, Y.Y. Dong, H.C. Hou, COVID-19 CT image recognition algorithm based on transformer and CNN, Displays 72 (2022).
[162]
D.A. Mitrea, R. Brehar, S. Nedevschi, M. Lupsor-Platon, M. Socaciu, R. Badea, Hepatocellular carcinoma recognition from ultrasound images using combinations of conventional and deep learning techniques, Sensors 23 (5) (2023).
[163]
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discriminative localization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[164]
R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017.
[165]
D. Mukhtorov, M. Rakhmonova, S. Muksimova, Y.I. Cho, Endoscopic image classification based on explainable deep learning, Sensors 23 (6) (2023).
[166]
H.S. Alghamdi, Towards explainable deep neural networks for the automatic detection of diabetic retinopathy, Applied Sciences-Basel 12 (19) (2022).
[167]
A. Chattopadhay, A. Sarkar, P. Howlader, V.N. Balasubramanian, Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks, in: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, 2018.
[168]
M. Wattenberg, F. Viégas, I. Johnson, How to use t-SNE effectively, Distill 1 (10) (2016) e2.
[169]
L. McInnes, J. Healy, J. Melville, Umap: Uniform Manifold Approximation and Projection for Dimension Reduction, 2018, arXiv preprint arXiv:1802.03426.
[170]
W. Nie, Y. Zhang, A. Patel, A theoretical explanation for perplexing behaviors of backpropagation-based visualizations, in: International Conference on Machine Learning, PMLR, 2018.
[171]
M.E. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.A. Kadir, Z.B. Mahbub, K.R. Islam, M.S. Khan, A. Iqbal, N. Al Emadi, Can AI help in screening viral and COVID-19 pneumonia?, IEEE Access 8 (2020) 132665–132676.
[172]
X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, R.M. Summers, Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
[173]
D.Z. Kermany, Kang; goldbaum, michael, in: M. Data (Ed.), Large Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images, 2018.
[174]
J.P. Cohen, P. Morrison, L. Dao, K. Roth, T.Q. Duong, M. Ghassemi, Covid-19 Image Data Collection: Prospective Predictions Are the Future, 2020, arXiv preprint arXiv:2006.11988.
[175]
E. Soares, Plamen Angelov, Sarah Biaso, Higa Froes, Michele, and Kanda Abe, Daniel., SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification, medRxiv (2020).
[176]
H.a.W. Gunraj, Linda, Wong, Alexander, COVIDNet-CT, F.i. Medicine (Ed.), A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest CT Images, 2020.
[177]
M. Maftouni, A.C.C. Law, B. Shen, Y. Zhou, N. Ayoobi Yazdi, Z. Kong, A Robust Ensemble-Deep Learning Model for COVID-19 Diagnosis Based on an Integrated CT Scan Images Database, 2021.
[178]
I. Coulson, N.Z.D. Society (Ed.), DermNet, 2021.
[179]
Z. Lai, H. Deng, Medical image classification based on deep features extracted by deep model and statistic feature fusion with multilayer perceptron‬, Comput. Intell. Neurosci. (2018).
[180]
D. Gutman, N.C. Codella, E. Celebi, B. Helba, M. Marchetti, N. Mishra, A. Halpern, Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, Hosted by the International Skin Imaging Collaboration (ISIC), arXiv preprint arXiv:1605.01397, 2016.
[181]
N.C. Codella, D. Gutman, M.E. Celebi, B. Helba, M.A. Marchetti, S.W. Dusza, A. Kalloo, K. Liopyris, N. Mishra, H. Kittler, Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic), in: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), IEEE, 2018.
[182]
N. Codella, V. Rotemberg, P. Tschandl, M.E. Celebi, S. Dusza, D. Gutman, B. Helba, A. Kalloo, K. Liopyris, M. Marchetti, Skin Lesion Analysis toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (Isic), 2019, arXiv preprint arXiv:1902.03368.
[183]
D. Emma, Diabetic Retinopathy Detection. Kaggle.
[184]
S.D.M. Karthik, APTOS 2019 Blindness Detection. Kaggle.
[185]
E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P. Gain, R. Ordonez, P. Massin, A. Erginay, Feedback on a publicly distributed image database: the Messidor database, Image Anal. Stereol. 33 (3) (2014) 231–234.
[186]
R. Kiefer, Glaucoma Dataset: EyePACS-AIROGS-Light-V2. Kaggle.
[187]
J. Cheng, brain tumor dataset. figshare. Dataset. (2017).
[188]
E. Giacomello, D. Loiacono, L. Mainardi, Brain MRI tumor segmentation with adversarial networks, in: 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, 2020.
[189]
Z. Ji, Y. Shen, C. Ma, M. Gao, Scribble-based hierarchical weakly supervised learning for brain tumor segmentation, in: Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part III 22, Springer, 2019.
[190]
N. Chakrabarty, Brain MRI Images for Brain Tumor Detection, 2019.
[191]
A.E. Flanders, L.M. Prevedello, G. Shih, S.S. Halabi, J. Kalpathy-Cramer, R. Ball, J.T. Mongan, A. Stein, F.C. Kitamura, M.P. Lungren, Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge, Radiology: Artif. Intell. 2 (3) (2020).
[192]
R.D. Labati, V. Piuri, F. Scotti, All-IDB: the acute lymphoblastic leukemia image database for image processing, in: 2011 18th IEEE International Conference on Image Processing, IEEE, 2011.
[193]
S. Mourya, S. Kant, P. Kumar, A. Gupta, R. Gupta, T.C.I. Archive (Ed.), ALL Challenge Dataset of ISBI 2019 (C-NMC 2019), 2019.
[194]
F.A. Spanhol, L.S. Oliveira, C. Petitjean, L. Heutte, A dataset for breast cancer histopathological image classification, IEEE Trans. Biomed. Eng. 63 (7) (2015) 1455–1462.
[195]
A. Janowczyk, A. Madabhushi, Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases, J. Pathol. Inf. 7 (2016) 29.
[196]
M. Heath, K. Bowyer, D. Kopans, P. Kegelmeyer Jr., R. Moore, K. Chang, S. Munishkumaran, Current status of the digital database for screening mammography, in: Digital Mammography: Nijmegen, 1998, Springer, 1998, pp. 457–460.
[197]
BenO, Intel & MobileODT Cervical Cancer Screening. Kaggle.
[198]
M. Yebasse, K.J. Cheoi, J. Ko, Malaria disease cell classification with highlighting small infected regions, IEEE Access 11 (2023) 15945–15953.
[199]
P.P. Banik, R. Saha, K.D. Kim, An automatic nucleus segmentation and CNN model based classification method of white blood cell, Expert Syst. Appl. 149 (2020).
[200]
S. Li, W. Song, H. Qin, A. Hao, Deep variance network: an iterative, improved CNN framework for unbalanced training datasets, Pattern Recogn. 81 (2018) 294–308.
[201]
B.D. Bozorg, J. Zhang, B. ter Haar Romeny, Retinal microaneurysms detection using local convergence index features, arXiv (2017) 1–14.
[202]
M. Raghu, C.Y. Zhang, J. Kleinberg and S. Bengio. Transfusion: Understanding Transfer Learning for Medical Imaging.
[203]
T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for contrastive learning of visual representations, in: International Conference on Machine Learning, PMLR, 2020.
[204]
K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
[205]
D.P. Kingma, Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114 (2013).
[206]
Q.V. Le, Building high-level features using large scale unsupervised learning, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2013.
[207]
L.A. De Santi, F.I. Piparo, F. Bargagna, M.F. Santarelli, S. Celi, V. Positano, Part-prototype models in medical imaging: applications and current challenges, BioMedInformatics 4 (4) (2024) 2149–2172.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computers in Biology and Medicine
Computers in Biology and Medicine  Volume 185, Issue C
Feb 2025
1576 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 20 February 2025

Author Tags

  1. CNN
  2. Convolutional neural network
  3. Deep learning
  4. Medical image classification
  5. Medical image processing

Qualifiers

  • Review-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media