[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Exploring explainable AI features in the vocal biomarkers of lung disease

Published: 01 September 2024 Publication History

Abstract

This review delves into the burgeoning field of explainable artificial intelligence (XAI) in the detection and analysis of lung diseases through vocal biomarkers. Lung diseases, often elusive in their early stages, pose a significant public health challenge. Recent advancements in AI have ushered in innovative methods for early detection, yet the black-box nature of many AI models limits their clinical applicability. XAI emerges as a pivotal tool, enhancing transparency and interpretability in AI-driven diagnostics. This review synthesizes current research on the application of XAI in analyzing vocal biomarkers for lung diseases, highlighting how these techniques elucidate the connections between specific vocal features and lung pathology. We critically examine the methodologies employed, the types of lung diseases studied, and the performance of various XAI models. The potential for XAI to aid in early detection, monitor disease progression, and personalize treatment strategies in pulmonary medicine is emphasized. Furthermore, this review identifies current challenges, including data heterogeneity and model generalizability, and proposes future directions for research. By offering a comprehensive analysis of explainable AI features in the context of lung disease detection, this review aims to bridge the gap between advanced computational approaches and clinical practice, paving the way for more transparent, reliable, and effective diagnostic tools.

Highlights

The review presents groundbreaking applications of explainable artificial intelligence (XAI) in lung disease detection through vocal biomarkers, showcasing a novel approach in pulmonary diagnostics.
Highlights how XAI enhances transparency and interpretability in AI-driven lung disease diagnostics, bridging the gap between complex AI models and clinical application.
Provides a thorough examination of various methodologies used in XAI, detailing their effectiveness in identifying connections between vocal features and lung pathology.
Stresses the importance of ethical considerations and patient privacy in the deployment of AI-based diagnostics, emphasizing the need for responsible and trustworthy AI use in healthcare.
Offers insights into future directions for XAI in pulmonary medicine, including potential innovations and the integration with emerging technologies for enhanced patient care.

References

[1]
J. Meghji, K. Mortimer, A. Agusti, B.W. Allwood, I. Asher, E.D. Bateman, K. Bissell, C.E. Bolton, A. Bush, B. Celli, Improving lung health in low-income and middle-income countries: from challenges to solutions, Lancet 397 (2021) 928–940,.
[2]
S. Safiri, K. Carson-Chahhoud, M. Noori, S.A. Nejadghaderi, M.J. Sullman, J.A. Heris, K. Ansarin, M.A. Mansournia, G.S. Collins, A.-A. Kolahi, Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990-2019: results from the Global Burden of Disease Study 2019, BMJ (2022) 378,.
[3]
S. Chen, M. Kuhn, K. Prettner, F. Yu, T. Yang, T. Bärnighausen, D.E. Bloom, C. Wang, The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020–50: a health-augmented macroeconomic modelling study, Lancet Global Health 11 (2023) e1183–e1193,.
[4]
S. Salvi, G.A. Kumar, R. Dhaliwal, K. Paulson, A. Agrawal, P.A. Koul, P. Mahesh, S. Nair, V. Singh, A.N. Aggarwal, The burden of chronic respiratory diseases and their heterogeneity across the states of India: the Global Burden of Disease Study 1990–2016, Lancet Global Health 6 (2018) e1363–e1374,.
[5]
A. Agusti, C.F. Vogelmeier, D.M. Halpin, Tackling the global burden of lung disease through prevention and early diagnosis, Lancet Respir. Med. 10 (2022) 1013–1015,.
[6]
T. Ferkol, D. Schraufnagel, The global burden of respiratory disease, Annals of the American Thoracic Society 11 (2014) 404–406,.
[7]
F. Pancaldi, M. Sebastiani, G. Cassone, F. Luppi, S. Cerri, G. Della Casa, A. Manfredi, Analysis of pulmonary sounds for the diagnosis of interstitial lung diseases secondary to rheumatoid arthritis, Comput. Biol. Med. 96 (2018) 91–97,.
[8]
Y. Belessis, B. Dixon, G. Hawkins, J. Pereira, J. Peat, R. MacDonald, P. Field, A. Numa, J. Morton, K. Lui, Early cystic fibrosis lung disease detected by bronchoalveolar lavage and lung clearance index, Am. J. Respir. Crit. Care Med. 185 (2012) 862–873,.
[9]
D.S. Watson, J. Krutzinna, I.N. Bruce, C.E. Griffiths, I.B. McInnes, M.R. Barnes, L. Floridi, Clinical applications of machine learning algorithms: beyond the black box, BMJ (2019) 364,.
[10]
N. Luo, X. Zhong, L. Su, Z. Cheng, W. Ma, P. Hao, Artificial intelligence-assisted dermatology diagnosis: from unimodal to multimodal, Comput. Biol. Med. (2023),.
[11]
R. Ranjbarzadeh, A. Caputo, E.B. Tirkolaee, S.J. Ghoushchi, M. Bendechache, Brain tumor segmentation of MRI images: a comprehensive review on the application of artificial intelligence tools, Comput. Biol. Med. 152 (2023),.
[12]
W. Samek, T. Wiegand, K.-R. Müller, Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models, arXiv preprint arXiv:1708.08296 (2017),.
[13]
S. Ali, F. Akhlaq, A.S. Imran, Z. Kastrati, S.M. Daudpota, M. Moosa, The enlightening role of explainable artificial intelligence in medical & healthcare domains: a systematic literature review, Comput. Biol. Med. (2023),.
[14]
G. Vilone, L. Longo, Notions of explainability and evaluation approaches for explainable artificial intelligence, Inf. Fusion 76 (2021) 89–106,.
[15]
A.B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. García, S. Gil-López, D. Molina, R. Benjamins, Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI, Inf. Fusion 58 (2020) 82–115,.
[16]
D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, G.-Z. Yang, XAI—explainable artificial intelligence, Sci. Robot. 4 (2019),.
[17]
M. Ghassemi, L. Oakden-Rayner, A.L. Beam, The false hope of current approaches to explainable artificial intelligence in health care, The Lancet Digital Health 3 (2021) e745–e750,.
[18]
J.-B. Lamy, B. Sekar, G. Guezennec, J. Bouaud, B. Séroussi, Explainable artificial intelligence for breast cancer: a visual case-based reasoning approach, Artif. Intell. Med. 94 (2019) 42–53,.
[19]
M. Chary, E.W. Boyer, M.M. Burns, Diagnosis of acute poisoning using explainable artificial intelligence, Comput. Biol. Med. 134 (2021),.
[20]
G. Fagherazzi, A. Fischer, M. Ismael, V. Despotovic, Voice for health: the use of vocal biomarkers from research to clinical practice, Digit. Biomark. 5 (2021) 78–88,.
[21]
J. Meena, Y. Hasija, Application of explainable artificial intelligence in the identification of Squamous Cell Carcinoma biomarkers, Comput. Biol. Med. 146 (2022),.
[22]
C.C. Yang, Explainable artificial intelligence for predictive modeling in healthcare, Journal of healthcare informatics research 6 (2022) 228–239,.
[23]
G. Novakovsky, N. Dexter, M.W. Libbrecht, W.W. Wasserman, S. Mostafavi, Obtaining genetics insights from deep learning via explainable artificial intelligence, Nat. Rev. Genet. 24 (2023) 125–137,.
[24]
J. Petch, S. Di, W. Nelson, Opening the black box: the promise and limitations of explainable machine learning in cardiology, Can. J. Cardiol. 38 (2022) 204–213,.
[25]
S. Reddy, Explainability and artificial intelligence in medicine, The Lancet Digital Health 4 (2022) e214–e215,.
[26]
K. Rasheed, A. Qayyum, M. Ghaly, A. Al-Fuqaha, A. Razi, J. Qadir, Explainable, trustworthy, and ethical machine learning for healthcare: a survey, Comput. Biol. Med. (2022),.
[27]
J.C. Mundt, A.P. Vogel, D.E. Feltner, W.R. Lenderking, Vocal acoustic biomarkers of depression severity and treatment response, Biol. Psychiatry 72 (2012) 580–587,.
[28]
B. Tracey, S. Patel, Y. Zhang, K. Chappie, D. Volfson, F. Parisi, C. Adans-Dester, F. Bertacchi, P. Bonato, P. Wacnik, Voice biomarkers of recovery from acute respiratory illness, IEEE Journal of Biomedical and Health Informatics 26 (2021) 2787–2795,.
[29]
N. Cummins, A. Baird, B.W. Schuller, Speech analysis for health: current state-of-the-art and the increasing impact of deep learning, Methods 151 (2018) 41–54,.
[30]
E.E. Mohamed, Voice changes in patients with chronic obstructive pulmonary disease, Egypt. J. Chest Dis. Tuberc. 63 (2014) 561–567,.
[31]
A.M. Saeed, N.M. Riad, N.M. Osman, A.N. Khattab, S.E. Mohammed, Study of voice disorders in patients with bronchial asthma and chronic obstructive pulmonary disease, Egyptian Journal of Bronchology 12 (2018) 20–26,.
[32]
S.-B. Zhang, M. Hong, X.-Y. Sun, D.W. Huang, D.-H. He, Y.-F. Chen, Y. Yuan, Y.-Q. Liu, Silybin has therapeutic efficacy against non-small cell lung cancer through targeting of skp2, Acta Materia Medica 1 (2022) 302–313,.
[33]
J.A. Sidey-Gibbons, C.J. Sidey-Gibbons, Machine learning in medicine: a practical introduction, BMC Med. Res. Methodol. 19 (2019) 1–18,.
[34]
J.M. Tracy, Y. Özkanca, D.C. Atkins, R.H. Ghomi, Investigating voice as a biomarker: deep phenotyping methods for early detection of Parkinson's disease, J. Biomed. Inf. 104 (2020),.
[35]
R. Dias, A. Torkamani, Artificial intelligence in clinical and genomic diagnostics, Genome Med. 11 (2019) 1–12,.
[36]
O. Ashraf, E. Rabold, K. Schlichtkrull, A. Singh, S. Venneti, M.M.D.A. Khan, R. Kulshreshtha, P.P. Naval, Voice-based screening and monitoring of chronic respiratory conditions, Chest 158 (2020) A1687,.
[37]
H. Lin, C. Karjadi, T.F. Ang, J. Prajakta, C. McManus, T.W. Alhanai, J. Glass, R. Au, Identification of digital voice biomarkers for cognitive health, Exploration of medicine 1 (2020) 406,.
[38]
L. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, M. Law, Comparison of next-generation sequencing systems, J. Biomed. Biotechnol. (2012) 2012,.
[39]
J. Amann, A. Blasimme, E. Vayena, D. Frey, V.I. Madai, P.Q. Consortium, Explainability for artificial intelligence in healthcare: a multidisciplinary perspective, BMC Med. Inf. Decis. Making 20 (2020) 1–9,.
[40]
H. Chen, C. Gomez, C.-M. Huang, M. Unberath, Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review, NPJ digital medicine 5 (2022) 156,.
[41]
C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nat. Mach. Intell. 1 (2019) 206–215,.
[42]
C. Combi, B. Amico, R. Bellazzi, A. Holzinger, J.H. Moore, M. Zitnik, J.H. Holmes, A manifesto on explainability for artificial intelligence in medicine, Artif. Intell. Med. 133 (2022),.
[43]
P. Gupta, H. Wen, L. Di Francesco, F. Ayazi, Detection of pathological mechano-acoustic signatures using precision accelerometer contact microphones in patients with pulmonary disorders, Sci. Rep. 11 (2021),.
[44]
M. Gilfillan, A. Bhandari, V. Bhandari, Diagnosis and management of bronchopulmonary dysplasia, Bmj 375 (2021),.
[45]
S. Kaur, E. Larsen, J. Harper, B. Purandare, A. Uluer, M.A. Hasdianda, N.A. Umale, J. Killeen, E. Castillo, S. Jariwala, Development and validation of a respiratory-Responsive vocal biomarker–based tool for generalizable detection of respiratory impairment: independent case-control studies in multiple respiratory conditions including asthma, chronic obstructive pulmonary disease, and COVID-19, J. Med. Internet Res. 25 (2023),.
[46]
K. Wieczorek, S. Ananth, D. Valazquez-Pimentel, Acoustic biomarkers in asthma: a systematic review, J. Asthma (2024) 1–18,.
[47]
M.Z. Alam, A. Simonetti, R. Brillantino, N. Tayler, C. Grainge, P. Siribaddana, S.R. Nouraei, J. Batchelor, M.S. Rahman, E.V. Mancuzo, Predicting pulmonary function from the analysis of voice: a machine learning approach, Frontiers in digital health 4 (2022),.
[48]
Z. Zhu, S. Zhao, J. Li, Y. Wang, L. Xu, Y. Jia, Z. Li, W. Li, G. Chen, X. Wu, Development and application of a deep learning-based comprehensive early diagnostic model for chronic obstructive pulmonary disease, Respir. Res. 25 (2024) 1–12,.
[49]
A. Srivastava, S. Jain, R. Miranda, S. Patil, S. Pandya, K. Kotecha, Deep learning based respiratory sound analysis for detection of chronic obstructive pulmonary disease, PeerJ Computer Science 7 (2021) e369,.
[50]
I. Tessler, A. Primov-Fever, S. Soffer, R. Anteby, N.A. Gecel, N. Livneh, E.E. Alon, E. Zimlichman, E. Klang, Deep learning in voice analysis for diagnosing vocal cord pathologies: a systematic review, Eur. Arch. Oto-Rhino-Laryngol. 281 (2024) 863–871,.
[51]
S.-Y. Jung, C.-H. Liao, Y.-S. Wu, S.-M. Yuan, C.-T. Sun, Efficiently classifying lung sounds through depthwise separable CNN models with fused STFT and MFCC features, Diagnostics 11 (2021) 732,.
[52]
M. Phillips, T.L. Bauer, H.I. Pass, A volatile biomarker in breath predicts lung cancer and pulmonary nodules, J. Breath Res. 13 (2019),.
[53]
A.H. Sabry, O.I.D. Bashi, N.N. Ali, Y.M. Al Kubaisi, Lung disease recognition methods using audio-based analysis with machine learning, beliyon (2024),.
[54]
D.J. DePianto, S. Chandriani, A.R. Abbas, G. Jia, E.N. N'Diaye, P. Caplazi, S.E. Kauder, S. Biswas, S.K. Karnik, C. Ha, Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis, Thorax 70 (2015) 48–56,.
[55]
Y. Kumai, Pathophysiology of fibrosis in the vocal fold: current research, future treatment strategies, and obstacles to restoring vocal fold pliability, Int. J. Mol. Sci. 20 (2019) 2551,.
[56]
N.M. Ralbovsky, I.K. Lednev, Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning, Chem. Soc. Rev. 49 (2020) 7428–7453,.
[57]
I. Minopoulou, A. Kleyer, M. Yalcin-Mutlu, F. Fagni, S. Kemenes, C. Schmidkonz, A. Atzinger, M. Pachowsky, K. Engel, L. Folle, Imaging in inflammatory arthritis: progress towards precision medicine, Nat. Rev. Rheumatol. 19 (2023) 650–665,.
[58]
S. Umirzakova, S. Ahmad, L.U. Khan, T. Whangbo, Medical image Super-Resolution for Smart healthcare applications: a comprehensive survey, Inf. Fusion (2023),.
[59]
E. Kallvik, J. Savolainen, S. Simberg, Vocal symptoms and voice quality in children with allergy and asthma, J. Voice 31 (2017) 515. e519–e515. e514,.
[60]
H.E. Hassen, A.M.A. Hasseba, Voice evaluation in asthma patients using inhaled corticosteroids, The Turkish Journal of Ear Nose and Throat 26 (2016) 101–108,.
[61]
M.M.D.A. Khan, P.P. Naval, R. Kulshreshtha, S. Venneti, A. Singh, VOICE-BASED monitoring OF COPD, Chest 160 (2021) A2173–A2174,. PlumX Metrics.
[62]
G.d.A.P. da Silva, T.D. Feltrin, F. dos Santos Pichini, C.A. Cielo, A.S. Pasqualoto, Quality of life predictors in voice of individuals with chronic obstructive pulmonary disease, J. Voice (2022),.
[63]
A.J. Hoffman, R.A. Brintnall, A. von Eye, J. Cooper, J.K. Brown, The voice of postsurgical lung cancer patients regarding supportive care needs, Lung Cancer Targets Ther. (2014) 21–31,.
[64]
C.F. Lee, P.N. Carding, M. Fletcher, The nature and severity of voice disorders in lung cancer patients, Logopedics Phoniatrics Vocology 33 (2008) 93–103,.
[65]
R.J. Davis, B. Messing, N.M. Cohen, L.M. Akst, Voice quality and laryngeal findings in patients with suspected lung cancer, Otolaryngology-Head Neck Surg. (Tokyo) 166 (2022) 133–138,.
[66]
Y. Wakwaya, D. Ramdurai, J.J. Swigris, Managing cough in idiopathic pulmonary fibrosis, Chest 160 (2021) 1774–1782,.
[67]
B.M. Lourenço, K.M. Costa, M. da Silva Filho, Voice disorder in cystic fibrosis patients, PLoS One 9 (2014),.
[68]
M. Desjardins, H.S. Bonilha, The impact of respiratory exercises on voice outcomes: a systematic review of the literature, J. Voice 34 (2020) 648. e641–e648. e639,.
[69]
D. Sánchez Morillo, A. Leon Jimenez, S.A. Moreno, Computer-aided diagnosis of pneumonia in patients with chronic obstructive pulmonary disease, J. Am. Med. Inf. Assoc. 20 (2013) e111–e117,.
[70]
A. Rossi, B. Butorac-Petanjek, M. Chilosi, B.G. Cosio, M. Flezar, N. Koulouris, J. Marin, N. Miculinic, G. Polese, M. Samaržija, Chronic obstructive pulmonary disease with mild airflow limitation: current knowledge and proposal for future research–a consensus document from six scientific societies, Int. J. Chronic Obstr. Pulm. Dis. (2017) 2593–2610,.
[71]
A. Higham, A.M. Quinn, J.E.D. Cançado, D. Singh, The pathology of small airways disease in COPD: historical aspects and future directions, Respiratory research 20 (2019) 1–11,.
[72]
R.L. Jones, P.B. Noble, J.G. Elliot, A.L. James, Airway remodelling in COPD: It's not asthma, Respirology 21 (2016) 1347–1356,.
[73]
S. Huang, M.M. Vasquez, M. Halonen, F.D. Martinez, S. Guerra, Asthma, airflow limitation and mortality risk in the general population, Eur. Respir. J. 45 (2015) 338–346,.
[74]
M. Phillips, N. Altorki, J.H. Austin, R.B. Cameron, R.N. Cataneo, R. Kloss, R.A. Maxfield, M.I. Munawar, H.I. Pass, A. Rashid, Detection of lung cancer using weighted digital analysis of breath biomarkers, Clinica chimica acta 393 (2008) 76–84,.
[75]
D.J. DePianto, S. Chandriani, A.R. Abbas, G. Jia, E.N. N'Diaye, P. Caplazi, S.E. Kauder, S. Biswas, S.K. Karnik, C. Ha, Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis, Thorax (2014),. thoraxjnl-2013-204596.
[76]
L.M. Cross, M.A. Matthay, Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury, Crit. Care Clin. 27 (2011) 355–377,.
[77]
K.K. Lella, A. Pja, Automatic diagnosis of COVID-19 disease using deep convolutional neural network with multi-feature channel from respiratory sound data: cough, voice, and breath, Alex. Eng. J. 61 (2022) 1319–1334,.
[78]
C.T. Engineer, C.A. Perez, Y.H. Chen, R.S. Carraway, A.C. Reed, J.A. Shetake, V. Jakkamsetti, K.Q. Chang, M.P. Kilgard, Cortical activity patterns predict speech discrimination ability, Nat. Neurosci. 11 (2008) 603–608,.
[79]
A. Yellamsetty, G.M. Bidelman, Brainstem correlates of concurrent speech identification in adverse listening conditions, Brain Res. 1714 (2019) 182–192,.
[80]
S. Krishnan, Y. Athavale, Trends in biomedical signal feature extraction, Biomed. Signal Process Control 43 (2018) 41–63,.
[81]
G. Sharma, K. Umapathy, S. Krishnan, Trends in audio signal feature extraction methods, Appl. Acoust. 158 (2020),.
[82]
P. Harar, J.B. Alonso-Hernandezy, J. Mekyska, Z. Galaz, R. Burget, Z. Smekal, Voice pathology detection using deep learning: a preliminary study, in: 2017 International Conference and Workshop on Bioinspired Intelligence (IWOBI), IEEE, 2017, pp. 1–4,.
[83]
N.Q. Abdulmajeed, B. Al‐Khateeb, M.A. Mohammed, Voice pathology identification system using a deep learning approach based on unique feature selection sets, Expet Syst. (2023),.
[84]
R. Jahangir, Y.W. Teh, H.F. Nweke, G. Mujtaba, M.A. Al-Garadi, I. Ali, Speaker identification through artificial intelligence techniques: a comprehensive review and research challenges, Expert Syst. Appl. 171 (2021),.
[85]
R. Jahangir, Y.W. Teh, F. Hanif, G. Mujtaba, Deep learning approaches for speech emotion recognition: state of the art and research challenges, Multimed. Tool. Appl. (2021) 1–68,.
[86]
Roy, N.; Barkmeier-Kraemer, J.; Eadie, T.; Sivasankar, M.P.; Mehta, D.; Paul, D.; Hillman, R. (2013): Evidence-based clinical voice assessment: a systematic review. https://doi.org/10.1044/1058-0360(2012/12-0014.
[87]
L. Hansen, Y.P. Zhang, D. Wolf, K. Sechidis, N. Ladegaard, R. Fusaroli, A generalizable speech emotion recognition model reveals depression and remission, Acta Psychiatr. Scand. 145 (2022) 186–199,.
[88]
N. Prodi, C. Visentin, A slight increase in reverberation time in the classroom affects performance and behavioral listening effort, Ear Hear. 43 (2022) 460–476,.
[89]
N. Soda, B.H. Rehm, P. Sonar, N.-T. Nguyen, M.J. Shiddiky, Advanced liquid biopsy technologies for circulating biomarker detection, J. Mater. Chem. B 7 (2019) 6670–6704,.
[90]
B.M. Klinkhammer, T. Lammers, F.M. Mottaghy, F. Kiessling, J. Floege, P. Boor, Non-invasive molecular imaging of kidney diseases, Nat. Rev. Nephrol. 17 (2021) 688–703,.
[91]
P. Cao, Q. Zhang, S. Wu, M.A. Sullivan, Y. Huang, W. Gong, Y. Lv, X. Zhai, Y. Zhang, Baseline differences in metabolic profiles of patients with lung squamous cell carcinoma responding or not responding to treatment with nanoparticle albumin-bound paclitaxel (nab-paclitaxel), Acta Materia Medica 2 (2023) 347–356,.
[92]
S.A. Khanna, J.W. Nance, S.A. Suliman, Detection and monitoring of interstitial lung disease in patients with systemic sclerosis, Curr. Rheumatol. Rep. 24 (2022) 166–173,.
[93]
M.S. Wijsenbeek, C.C. Moor, K.A. Johannson, P.D. Jackson, Y.H. Khor, Y. Kondoh, S.K. Rajan, G.C. Tabaj, B.E. Varela, P. van der Wal, Home monitoring in interstitial lung diseases, Lancet Respir. Med. 11 (2023) 97–110,.
[94]
S.M. Swain, M. Nishino, L.H. Lancaster, B.T. Li, A.G. Nicholson, B.J. Bartholmai, J. Naidoo, E. Schumacher-Wulf, K. Shitara, J. Tsurutani, Multidisciplinary clinical guidance on trastuzumab deruxtecan (T-DXd)–related interstitial lung disease/pneumonitis—focus on proactive monitoring, diagnosis, and management, Cancer Treat Rev. 106 (2022),.
[95]
M. Little, P. Mcsharry, S. Roberts, D. Costello, I. Moroz, Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection, Nature Precedings (2007) 1,. 1.
[96]
P. Gómez-Vilda, R. Fernández-Baillo, A. Nieto, F. Díaz, F.J. Fernández-Camacho, V. Rodellar, A. Álvarez, R. Martínez, Evaluation of voice pathology based on the estimation of vocal fold biomechanical parameters, J. Voice 21 (2007) 450–476,.
[97]
A.A.S. Shaikh, M. Bhargavi, G.R. Naik, Unraveling the complexities of pathological voice through saliency analysis, Comput. Biol. Med. 166 (2023),.
[98]
R. Behroozmand, F. Almasganj, Optimal selection of wavelet-packet-based features using genetic algorithm in pathological assessment of patients' speech signal with unilateral vocal fold paralysis, Comput. Biol. Med. 37 (2007) 474–485,.
[99]
A. Rao, E. Huynh, T.J. Royston, A. Kornblith, S. Roy, Acoustic methods for pulmonary diagnosis, IEEE reviews in biomedical engineering 12 (2018) 221–239,.
[100]
M.Z. Alam, A. Simonetti, R. Brillantino, N. Tayler, C. Grainge, P. Siribaddana, S. Nouraei, J. Batchelor, M.S. Rahman, E.V. Mancuzo, Predicting pulmonary function from the analysis of voice: a machine learning approach, Frontiers in digital health 4 (2022),.
[101]
S. Xu, R.C. Deo, J. Soar, P.D. Barua, O. Faust, N. Homaira, A. Jaffe, A.L. Kabir, U.R. Acharya, Automated detection of airflow obstructive diseases: a systematic review of the last decade (2013-2022), Comput. Methods Progr. Biomed. (2023),.
[102]
R. Palaniappan, K. Sundaraj, N.U. Ahamed, Machine learning in lung sound analysis: a systematic review, Biocybern. Biomed. Eng. 33 (2013) 129–135,.
[103]
S. Gonem, W. Janssens, N. Das, M. Topalovic, Applications of artificial intelligence and machine learning in respiratory medicine, Thorax (2020),.
[104]
C. Poellabauer, N. Yadav, L. Daudet, S.L. Schneider, C. Busso, P.J. Flynn, Challenges in concussion detection using vocal acoustic biomarkers, IEEE Access 3 (2015) 1143–1160,.
[105]
K. Kaczmarek-Majer, G. Casalino, G. Castellano, M. Dominiak, O. Hryniewicz, O. Kamińska, G. Vessio, N. Díaz-Rodríguez, PLENARY: explaining black-box models in natural language through fuzzy linguistic summaries, Inform. Sciences. 614 (2022) 374–399,.
[106]
Y. Zhang, Y. Weng, J. Lund, Applications of explainable artificial intelligence in diagnosis and surgery, Diagnostics 12 (2022) 237,.
[107]
J. Laguarta, F. Hueto, B. Subirana, COVID-19 artificial intelligence diagnosis using only cough recordings, IEEE Open Journal of Engineering in Medicine and Biology 1 (2020) 275–281,.
[108]
A.A.A. Setio, F. Ciompi, G. Litjens, P. Gerke, C. Jacobs, S.J. Van Riel, M.M.W. Wille, M. Naqibullah, C.I. Sánchez, B. Van Ginneken, Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks, IEEE Trans. Med. Imaging 35 (2016) 1160–1169,.
[109]
Z. Zhang, E. Sejdić, Radiological images and machine learning: trends, perspectives, and prospects, Comput. Biol. Med. 108 (2019) 354–370,.
[110]
P. Lakhani, B. Sundaram, Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks, Radiology 284 (2017) 574–582,.
[111]
J. Ma, M.A. Guarnera, W. Zhou, H. Fang, F. Jiang, A prediction model based on biomarkers and clinical characteristics for detection of lung cancer in pulmonary nodules, Translational oncology 10 (2017) 40–45,.
[112]
A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, S. Thrun, Dermatologist-level classification of skin cancer with deep neural networks, Nature 542 (2017) 115–118,.
[113]
M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin, H. Larochelle, Brain tumor segmentation with deep neural networks, Med. Image Anal. 35 (2017) 18–31,.
[114]
G. Litjens, T. Kooi, B.E. Bejnordi, A.A.A. Setio, F. Ciompi, M. Ghafoorian, J.A. Van Der Laak, B. Van Ginneken, C.I. Sánchez, A survey on deep learning in medical image analysis, Med. Image Anal. 42 (2017) 60–88,.
[115]
A. Christe, A.A. Peters, D. Drakopoulos, J.T. Heverhagen, T. Geiser, T. Stathopoulou, S. Christodoulidis, M. Anthimopoulos, S.G. Mougiakakou, L. Ebner, Computer-aided diagnosis of pulmonary fibrosis using deep learning and CT images, Invest. Radiol. 54 (2019) 627,.
[116]
M. Rana, M. Bhushan, Machine learning and deep learning approach for medical image analysis: diagnosis to detection, Multimed. Tool. Appl. 82 (2023) 26731–26769,.
[117]
V. Hassija, V. Chamola, A. Mahapatra, A. Singal, D. Goel, K. Huang, S. Scardapane, I. Spinelli, M. Mahmud, A. Hussain, Interpreting black-box models: a review on explainable artificial intelligence, Cognitive Computation (2023) 1–30,.
[118]
Z. Obermeyer, B. Powers, C. Vogeli, S. Mullainathan, Dissecting racial bias in an algorithm used to manage the health of populations, Science 366 (2019) 447–453,.
[119]
D.S. Char, N.H. Shah, D. Magnus, Implementing machine learning in health care—addressing ethical challenges, N. Engl. J. Med. 378 (2018) 981,.
[120]
D. Castelvecchi, Can we open the black box of AI?, Nature News 538 (2016) 20,.
[121]
T. Evans, C.O. Retzlaff, C. Geißler, M. Kargl, M. Plass, H. Müller, T.-R. Kiehl, N. Zerbe, A. Holzinger, The explainability paradox: challenges for xAI in digital pathology, Future Generat. Comput. Syst. 133 (2022) 281–296.
[122]
B.N. Patel, L. Rosenberg, G. Willcox, D. Baltaxe, M. Lyons, J. Irvin, P. Rajpurkar, T. Amrhein, R. Gupta, S. Halabi, Human–machine partnership with artificial intelligence for chest radiograph diagnosis, NPJ digital medicine 2 (2019) 111,.
[123]
S.I. Lambert, M. Madi, S. Sopka, A. Lenes, H. Stange, C.-P. Buszello, A. Stephan, An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals, NPJ Digital Medicine 6 (2023) 111.
[124]
E.J. Topol, High-performance medicine: the convergence of human and artificial intelligence, Nat. Med. 25 (2019) 44–56,.
[125]
S. Benjamens, P. Dhunnoo, B. Meskó, The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database, NPJ digital medicine 3 (2020) 118,.
[126]
M. Langer, D. Oster, T. Speith, H. Hermanns, L. Kästner, E. Schmidt, A. Sesing, K. Baum, What do we want from Explainable Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research, Artif. Intell. 296 (2021),.
[127]
E.H. Shortliffe, M.J. Sepúlveda, Clinical decision support in the era of artificial intelligence, JAMA 320 (2018) 2199–2200,.
[128]
H. Alfalahi, S.B. Dias, A.H. Khandoker, K.R. Chaudhuri, L.J. Hadjileontiadis, A scoping review of neurodegenerative manifestations in explainable digital phenotyping, npj Parkinson's Disease 9 (2023) 49,.
[129]
A. Holzinger, C. Biemann, C.S. Pattichis, D.B. Kell, What do we need to build explainable AI systems for the medical domain?, arXiv preprint arXiv:1712.09923 (2017),.
[130]
E. Tjoa, C. Guan, A survey on explainable artificial intelligence (xai): toward medical xai, IEEE Transact. Neural Networks Learn. Syst. 32 (2020) 4793–4813,.
[131]
D.V. Carvalho, E.M. Pereira, J.S. Cardoso, Machine learning interpretability: a survey on methods and metrics, Electronics 8 (2019) 832,.
[132]
S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J.M. Alonso-Moral, R. Confalonieri, R. Guidotti, J. Del Ser, N. Díaz-Rodríguez, F. Herrera, Explainable artificial intelligence (XAI): what we know and what is left to attain trustworthy artificial intelligence, Inf. Fusion 99 (2023),.
[133]
A. Adadi, M. Berrada, Peeking inside the black-box: a survey on explainable artificial intelligence (XAI), IEEE Access 6 (2018) 52138–52160,.
[134]
A.F. Markus, J.A. Kors, P.R. Rijnbeek, The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies, J. Biomed. Inf. 113 (2021),.
[135]
W. Samek, K.-R. Müller, Towards explainable artificial intelligence, in: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 2019, pp. 5–22,.
[136]
C.M. Cutillo, K.R. Sharma, L. Foschini, S. Kundu, M. Mackintosh, K.D. Mandl, M.i.H.W.W.G.B.T.C.E.C.C.G.K.G.V.J.R.S.B.S.N. 1, Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency, NPJ digital medicine 3 (2020) 47,.
[137]
T. Chen, C. Shang, P. Su, E. Keravnou-Papailiou, Y. Zhao, G. Antoniou, Q. Shen, A decision tree-initialised neuro-fuzzy approach for clinical decision support, Artif. Intell. Med. 111 (2021),.
[138]
S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, Adv. Neural Inf. Process. Syst. 30 (2017),.
[139]
M.T. Ribeiro, S. Singh, C. Guestrin, Why should i trust you?" Explaining the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1135–1144,.
[140]
A. Holzinger, G. Langs, H. Denk, K. Zatloukal, H. Müller, Causability and explainability of artificial intelligence in medicine, Wiley Interdisciplinary Reviews: Data Min. Knowl. Discov. 9 (2019),.
[141]
R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A survey of methods for explaining black box models, ACM Comput. Surv. 51 (2018) 1–42,.
[142]
B. Alsinglawi, O. Alshari, M. Alorjani, O. Mubin, F. Alnajjar, M. Novoa, O. Darwish, An explainable machine learning framework for lung cancer hospital length of stay prediction, Sci. Rep. 12 (2022) 607,.
[143]
A. Rafferty, R. Ramaesh, A. Rajan, Transparent and clinically interpretable AI for lung cancer detection in chest X-rays, arXiv preprint arXiv:2403.19444 (2024),.
[144]
S. Narteni, I. Baiardini, F. Braido, M. Mongelli, Explainable artificial intelligence for cough-related quality of life impairment prediction in asthmatic patients, PLoS One 19 (2024),.
[145]
T. Bashford, M.H.S. Lau, M.M. Huntly, M.N. Morgan, M.A. Iyenoma, T. Powell, B. Zeng, W. Treforest, AI classification of respiratory illness through vocal biomarkers and a bespoke articulatory speech protocol, Int. J. Simulat. Syst. Sci. Technol. 25 (2024),.
[146]
N.S. Haider, A. Behera, Computerized lung sound based classification of asthma and chronic obstructive pulmonary disease (COPD), Biocybern. Biomed. Eng. 42 (2022) 42–59,.
[147]
A. Idrisoglu, Voice for decision support in healthcare applied to chronic obstructive pulmonary disease classification: a machine learning approach, Blekinge Tekniska Högskola (2024).
[148]
S.O. Ooko, D. Mukanyiligira, J.P. Munyampundu, J. Nsenga, Synthetic Exhaled breath data-based Edge AI model for the prediction of chronic obstructive pulmonary disease, in: 2021 International Conference on Computing and Communications Applications and Technologies (I3CAT), IEEE, 2021, pp. 1–6,.
[149]
V. Nathan, K. Vatanparvar, M.M. Rahman, E. Nemati, J. Kuang, Assessment of chronic pulmonary disease patients using biomarkers from natural speech recorded by mobile devices, in: 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN), IEEE, 2019, pp. 1–4,.
[150]
V. Nathan, M.M. Rahman, K. Vatanparvar, E. Nemati, E. Blackstock, J. Kuang, Extraction of voice parameters from continuous running speech for pulmonary disease monitoring, in: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2019, pp. 859–864,.
[151]
L. Dai, X. Yang, H. Li, X. Zhao, L. Lin, Y. Jiang, Y. Wang, Z. Li, H. Shen, A clinically actionable and explainable real-time risk assessment framework for stroke-associated pneumonia, Artif. Intell. Med. 149 (2024),.
[152]
J.D.S. Sara, D. Orbelo, E. Maor, L.O. Lerman, A. Lerman, Guess what We can Hear–novel voice biomarkers for the remote detection of disease, Mayo Clin. Proc. (2023),. Elsevier.
[153]
J.D.S. Sara, E. Maor, B. Borlaug, B.R. Lewis, D. Orbelo, L.O. Lerman, A. Lerman, Non-invasive vocal biomarker is associated with pulmonary hypertension, PLoS One 15 (2020),.
[154]
R. Groh, Z. Lei, L. Martignetti, N.Y. Li-Jessen, A.M. Kist, Efficient and explainable deep neural networks for airway symptom detection in support of wearable health technology, Advanced Intelligent Systems 4 (2022),.
[155]
N. Sasikumar, M. Senthilkumar, Deep convolutional generative adversarial networks for automated segmentation and detection of lung adenocarcinoma using red deer optimization algorithm, Inf. Technol. Control 52 (2023) 680–692,.
[156]
J.S. Jennifer, T.S. Sharmila, A neutrosophic set approach on chest X-rays for automatic lung infection detection, Inf. Technol. Control 52 (2023) 37–52,.
[157]
N.-u. Rehman, M.S. Zia, T. Meraj, H.T. Rauf, R. Damaševičius, A.M. El-Sherbeeny, M.A. El-Meligy, A self-activated cnn approach for multi-class chest-related COVID-19 detection, Appl. Sci. 11 (2021) 9023,.
[158]
A. Jaszcz, D. Połap, R. Damaševičius, Lung x-ray image segmentation using heuristic red fox optimization algorithm, Sci. Program. 2022 (2022) 1–8,.
[159]
T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett. 27 (2006) 861–874,.
[160]
Z. Obermeyer, E.J. Emanuel, Predicting the future—big data, machine learning, and clinical medicine, N. Engl. J. Med. 375 (2016) 1216,.
[161]
Z. Naz, M.U.G. Khan, T. Saba, A. Rehman, H. Nobanee, S.A. Bahaj, An explainable AI-enabled framework for interpreting pulmonary diseases from chest radiographs, Cancers 15 (2023) 314,.
[162]
N. Das, S. Happaerts, I. Gyselinck, M. Staes, E. Derom, G. Brusselle, F. Burgos, M. Contoli, A.T. Dinh-Xuan, F.M. Franssen, Collaboration between explainable artificial intelligence and pulmonologists improves the accuracy of pulmonary function test interpretation, Eur. Respir. J. 61 (2023),.
[163]
F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine learning, arXiv preprint arXiv:1702.08608 (2017),.
[164]
V. Pitroda, M.M. Fouda, Z.M. Fadlullah, An explainable AI model for interpretable lung disease classification, in: 2021 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS), IEEE, 2021, pp. 98–103,.
[165]
N.A. Wani, R. Kumar, J. Bedi, DeepXplainer: an interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence, Comput. Methods Progr. Biomed. 243 (2024),.
[166]
O. Wysocki, J.K. Davies, M. Vigo, A.C. Armstrong, D. Landers, R. Lee, A. Freitas, Assessing the communication gap between AI models and healthcare professionals: explainability, utility and trust in AI-driven clinical decision-making, Artif. Intell. 316 (2023),.
[167]
A. Glick, M. Clayton, N. Angelov, J. Chang, Impact of explainable artificial intelligence assistance on clinical decision-making of novice dental clinicians, JAMIA open 5 (2022),. ooac031.
[168]
Rane, N.; Choudhary, S.; Rane, J. (2023): Explainable artificial intelligence (XAI) in healthcare: interpretable models for clinical decision support. Available at: SSRN 4637897 https://doi.org/10.2139/ssrn.4637897.
[169]
S. Liu, A.B. McCoy, J.F. Peterson, T.A. Lasko, D.F. Sittig, S.D. Nelson, J. Andrews, L. Patterson, C.M. Cobb, D. Mulherin, Leveraging explainable artificial intelligence to optimize clinical decision support, J. Am. Med. Inf. Assoc. (2024),. ocae019.
[170]
J. Yang, A.A. Soltan, D.A. Clifton, Machine learning generalizability across healthcare settings: insights from multi-site COVID-19 screening, NPJ digital medicine 5 (2022) 69,.
[171]
C. Meske, E. Bunde, J. Schneider, M. Gersch, Explainable artificial intelligence: objectives, stakeholders, and future research opportunities, Inf. Syst. Manag. 39 (2022) 53–63,.
[172]
F. Maleki, K. Ovens, R. Gupta, C. Reinhold, A. Spatz, R. Forghani, Generalizability of machine learning models: Quantitative evaluation of three methodological pitfalls, Radiology, Artif. Intell. 5 (2022),.
[173]
S.C.H. Yang, T. Folke, P. Shafto, Abstraction, validation, and generalization for explainable artificial intelligence, Applied AI Letters 2 (2021) e37,.
[174]
S. Khan, S. Tsutsumi, T. Yairi, S. Nakasuka, Robustness of AI-based prognostic and systems health management, Annu. Rev. Control 51 (2021) 130–152,.
[175]
N. Feldkamp, S. Strassburger, From explainable AI to explainable simulation: using machine learning and XAI to understand system robustness, in: Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, 2023, pp. 96–106,.
[176]
L.H. Gilpin, D. Bau, B.Z. Yuan, A. Bajwa, M. Specter, L. Kagal, Explaining explanations: an overview of interpretability of machine learning, in: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), IEEE, 2018, pp. 80–89,.
[177]
R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, N. Elhadad, Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 1721–1730,.
[178]
J. Wiens, E.S. Shenoy, Machine learning for healthcare: on the verge of a major shift in healthcare epidemiology, Clin. Infect. Dis. 66 (2018) 149–153,.
[179]
A.L. Beam, I.S. Kohane, Big data and machine learning in health care, JAMA 319 (2018) 1317–1318,.
[180]
A. Rajkomar, E. Oren, K. Chen, A.M. Dai, N. Hajaj, M. Hardt, P.J. Liu, X. Liu, J. Marcus, M. Sun, Scalable and accurate deep learning with electronic health records, NPJ digital medicine 1 (2018) 18,.
[181]
S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng. 22 (2009) 1345–1359,.
[182]
K.M. Boehm, P. Khosravi, R. Vanguri, J. Gao, S.P. Shah, Harnessing multimodal data integration to advance precision oncology, Nat. Rev. Cancer 22 (2022) 114–126,.
[183]
A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, S. Thrun, J. Dean, A guide to deep learning in healthcare, Nature medicine 25 (2019) 24–29,.
[184]
V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs, JAMA 316 (2016) 2402–2410,.
[185]
H. Guan, M. Liu, Domain adaptation for medical image analysis: a survey, IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. 69 (2021) 1173–1185,.
[186]
M. Talo, U.B. Baloglu, Ö. Yıldırım, U.R. Acharya, Application of deep transfer learning for automated brain abnormality classification using MR images, Cognit. Syst. Res. 54 (2019) 176–188,.
[187]
T. Shaikhina, N.A. Khovanova, Handling limited datasets with neural networks in medical applications: a small-data approach, Artif. Intell. Med. 75 (2017) 51–63,.
[188]
E. Vayena, A. Blasimme, I.G. Cohen, Machine learning in medicine: addressing ethical challenges, PLoS Med. 15 (2018),.
[189]
A. Rajkomar, M. Hardt, M.D. Howell, G. Corrado, M.H. Chin, Ensuring fairness in machine learning to advance health equity, Ann. Intern. Med. 169 (2018) 866–872,.
[190]
D. de la Iglesia, M. García-Remesal, A. Anguita, M. Muñoz-Mármol, C. Kulikowski, V. Maojo, A machine learning approach to identify clinical trials involving nanodrugs and nanodevices from clinicaltrials. gov, PLoS One 9 (2014),.
[191]
W.N. Price, I.G. Cohen, Privacy in the age of medical big data, Nat. Med. 25 (2019) 37–43,.
[192]
S. Gerke, T. Minssen, G. Cohen, Ethical and legal challenges of artificial intelligence-driven healthcare, in: Artificial Intelligence in Healthcare, Elsevier, 2020, pp. 295–336.
[193]
S. Wachter, B. Mittelstadt, C. Russell, Counterfactual explanations without opening the black box: automated decisions and the GDPR, Harv. JL & Tech. 31 (2017) 841,.
[194]
A. Gatouillat, Y. Badr, B. Massot, E. Sejdić, Internet of medical things: a review of recent contributions dealing with cyber-physical systems in medicine, IEEE Internet Things J. 5 (2018) 3810–3822,.
[195]
R. Miotto, F. Wang, S. Wang, X. Jiang, J.T. Dudley, Deep learning for healthcare: review, opportunities and challenges, Brief. Bioinform. 19 (2018) 1236–1246,.
[196]
T. Shaik, X. Tao, N. Higgins, L. Li, R. Gururajan, X. Zhou, U.R. Acharya, Remote patient monitoring using artificial intelligence: current state, applications, and challenges, Wiley Interdisciplinary Reviews: Data Min. Knowl. Discov. 13 (2023),.
[197]
F. Lei, Cross-cultural Adaptation and Validation of Lung Cancer Screening Health Belief Scale, University of California, Los Angeles, 2022.
[198]
H.-C. Thorsen-Meyer, A.B. Nielsen, A.P. Nielsen, B.S. Kaas-Hansen, P. Toft, J. Schierbeck, T. Strøm, P.J. Chmura, M. Heimann, L. Dybdahl, Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records, The Lancet Digital Health 2 (2020) e179–e191,.
[199]
S.M. Lauritsen, M. Kristensen, M.V. Olsen, M.S. Larsen, K.M. Lauritsen, M.J. Jørgensen, J. Lange, B. Thiesson, Explainable artificial intelligence model to predict acute critical illness from electronic health records, Nat. Commun. 11 (2020) 3852,.
[200]
G. Mancioppi, E. Rovini, L. Fiorini, R. Zeghari, A. Gros, V. Manera, P. Robert, F. Cavallo, Mild cognitive impairment identification based on motor and cognitive dual-task pooled indices, PLoS One 18 (2023),.
[201]
N. Pfeuffer, L. Baum, W. Stammer, B.M. Abdel-Karim, P. Schramowski, A.M. Bucher, C. Hügel, G. Rohde, K. Kersting, O. Hinz, Explanatory interactive machine learning: establishing an action design research process for machine learning projects, Business & Information Systems Engineering 65 (2023) 677–701,.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computers in Biology and Medicine
Computers in Biology and Medicine  Volume 179, Issue C
Sep 2024
1424 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 01 September 2024

Author Tags

  1. Explainable artificial intelligence
  2. Vocal biomarkers
  3. Lung disease detection
  4. AI transparency
  5. Pulmonary diagnostics
  6. Machine learning interpretability
  7. Computational Pulmonology
  8. Clinical AI applications
  9. Voice analysis
  10. Biomedical signal processing

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media