[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Automatic detection and morphological delineation of bacteriophages in electron microscopy images

Published: 01 September 2015 Publication History

Abstract

Automatic detection, recognition and geometric characterization of bacteriophages in electron microscopy images was the main objective of this work. A novel technique, combining phase congruency-based image enhancement, Hough transform-, Radon transform- and open active contours with free boundary conditions-based object detection was developed to detect and recognize the bacteriophages associated with infection and lysis of cyanobacteria Aphanizomenon flos-aquae. A random forest classifier designed to recognize phage capsids provided higher than 99% accuracy, while measurable phage tails were detected and associated with a correct capsid with 81.35% accuracy. Automatically derived morphometric measurements of phage capsids and tails exhibited lower variability than the ones obtained manually. The technique allows performing precise and accurate quantitative (e.g. abundance estimation) and qualitative (e.g. diversity and capsid size) measurements for studying the interactions between host population and different phages that infect the same host.

References

[1]
I.M.B. Martin, D.C. Marinescu, R.E. Lynch, T.S. Baker, Identification of spherical virus particles in digitized images of entire electron micrographs, J. Struct. Biol., 120 (1997) 146-157.
[2]
M. da Conceicao, M. Sangreman Proenca, J.F. Moura Nunes, A.P. Alves de Matos, Automatic virus particle selection-the entropy approach, IEEE Trans. Image Process., 22 (2013) 1996-2003.
[3]
O. Sertel, G. Lozanski, A. Shana'ah, M.N. Gurcan, Computer-aided detection of centroblasts for follicular lymphoma grading using adaptive likelihood-based cell segmentation, IEEE Trans. Biomed. Eng., 57 (2010) 2613-2616.
[4]
R.M. Glaeser, Historical background, J. Struct. Biol., 145 (2004) 15-18.
[5]
R.J. Hall, A. Patwardhan, A two step approach for semi-automated particle selection from low contrast cryo-electron micrographs, J. Struct. Biol., 145 (2004) 19-28.
[6]
J.R. Plaisier, R. Koning, H. Koerten, M. van Heel, J.P. Abrahams, TYSON, J. Struct. Biol., 145 (2004) 76-83.
[7]
Y.X. Zhu, B. Carragher, R.M. Glaeser, D. Fellmann, C. Bajaj, M. Bern, F. Mouche, F. de Haas, R.J. Hall, D.J. Kriegman, S.J. Ludtke, S.P. Mallick, P.A. Penczek, A.M. Roseman, F.J. Sigworth, N. Volkmann, C.S. Potter, automatic particle selection, J. Struct. Biol., 145 (2004) 3-14.
[8]
Z.Y. Yu, C. Bajaj, detecting circular and rectangular particles based on geometric feature detection in electron micrographs, J. Struct. Biol., 145 (2004) 168-180.
[9]
B.J. Matuszewski, L.-K. Shark, Hierarchical iterative Bayesian approach to automatic recognition of biological viruses in electron microscope images, in: Proceedings of the IEEE International Conference on Image Processing, vol. 2, IEEE, Thessaloniki, Greece, 2001, pp. 347-350.
[10]
V. Vigneron, T.Q. Syed, G. Barlovatz-Meimon, M. Malo, C. Montagne, S. Lelandais, adaptive filtering and hypothesis testing, Pattern Recognit. Lett., 31 (2010) 2214-2224.
[11]
T. Ogura, C. Sato, Automatic particle pickup method using a neural network has high accuracy by applying an initial weight derived from eigenimages, J. Struct. Biol., 145 (2004) 63-75.
[12]
C.O.S. Sorzano, E. Recarte, M. Alcorlo, J.R. Bilbao-Castro, C. San-Martin, R. Marabini, J.M. Carazo, automatic particle selection from electron micrographs using machine learning techniques, J. Struct. Biol., 167 (2009) 252-260.
[13]
C.A.B. Castañón, E. Recarte, M. Alcorlo, J.S. Fraga, S. Fernandez, A. Gruber, L.da F. Costa, Biological shape characterization for automatic image recognition and diagnosis of protozoan parasites of the genus eimeria, Pattern Recognit., 40 (2007) 1899-1910.
[14]
P. Bamford, B.C. Lovell, Unsupervised cell nucleus segmentation with active contours, Signal Process., 71 (1998) 203-213.
[15]
G. Li, T. Liu, J. Nie, L. Guo, J. Chen, J. Zhu, W. Xia, A. Mara, S. Holley, S. Wong, Segmentation of touching cell nuclei using gradient flow tracking, J. Microsc., 231 (2008) 47-58.
[16]
C. Park, J.Z. Huang, J.X. Ji, Y. Ding, Segmentation, inference and classification of partially overlapping nanoparticles, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 669-681.
[17]
C.A. Suttle, Viruses in the sea, Nature, 437 (2005) 356-361.
[18]
C.A. Suttle, Marine viruses-major players in the global ecosystem, Nat. Rev. Microbiol., 5 (2007) 801-812.
[19]
F. Rohwer, R.V. Thurber, Viruses manipulate the marine environment, Nature, 459 (2009) 207-212.
[20]
H.-W. Ackermann, D. Prangishvili, Prokaryote viruses studied by electron microscopy, Arch. Virol., 157 (2012) 1843-1849.
[21]
H.W. Ackermann, Bacteriophage observations and evolution, Res. Microbiol., 154 (2003) 245-251.
[22]
H.W. Ackermann, 5500 phages examined in the electron microscope, Arch. Virol., 152 (2007) 227-243.
[23]
F. Chen, J. Lu, Genomic sequence and evolution of marine Cyanophage P60, Appl. Environ. Microbiol., 68 (2002) 2589-2594.
[24]
N. Mann, Phages of the marine cyanobacterial picophytoplankton, FEMS Microbiol. Rev., 27 (2003) 17-34.
[25]
K. Holmfeldt, M. Middelboe, L. Nybroe, O. Riemann, Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their flavobacterium hosts, Appl. Environ. Microbiol., 73 (2007) 6730-6739.
[26]
M.B. Sullivan, J.B. Waterbury, S.W. Chisholm, Cyanophages infecting the oceanic cyanobacterium prochlorococcus, Nature, 424 (2003) 1047-1051.
[27]
M.B. Sullivan, B. Krastins, J.L. Hughes, L. Kelly, M. Chase, D. Sarracino, S.W. Chisholm, The genome and structural proteome of an ocean siphovirus, Environ. Microbiol., 11 (2009) 2935-2951.
[28]
V. Parada, G.J. Herndl, M.G. Weinbauer, Viral burst size of heterotrophic prokaryotes in aquatic systems, J. Mar. Biol. Assoc. U.K., 86 (2006) 613-621.
[29]
L. Deng, P.K. Hayes, Evidence for cyanophages active against bloom-forming freshwater cyanobacteria, Freshwater Biol., 53 (2008) 1240-1252.
[30]
S. Sulcius, G. Alzbutas, K. Kvederaviciute, J. Koreiviene, L. Zakrys, A. Lubys, R. Paskauskas, Draft genome sequence of the cyanobacterium Aphanizomenon flos-aquae strain 2012/KM1/D3, isolated from the Curonian Lagoon (Baltic Sea), Genome Announc., 3 (2015).
[31]
P. Kovesi, Phase congruency, Psychol. Res., 64 (2000) 136-148.
[32]
P.G. Leiman, S. Kanamaru, V.V. Mesyanzhinov, F. Arisaka, M.G. Rossmann, Structure and morphogenesis of bacteriophage T4, Cell. Mol. Life Sci., 60 (2003) 2356-2370.
[33]
S. Sulcius, E. Simoliunas, J. Staniulis, J. Koreiviene, P. Baltrusis, R. Meskys, R. Paskauskas, Characterization of a lytic cyanophage that infects the bloom-forming cyanobacterium Aphanizomenon flos-aquae, FEMS Microbiol. Ecol., 91 (2015) 1-7.
[34]
U. Granhall, Aphanizomenon flos-aquae, Physiol. Plant., 26 (1972) 332-337.
[35]
A. Verikas, A. Gelzinis, M. Bacauskiene, Phase congruency-based detection of circular objects applied to analysis of phytoplankton images, Pattern Recognit., 45 (2012) 1659-1670.
[36]
E. Davies, Circle detection, in: Machine Vision, Signal Processing and its Applications, Morgan Kaufmann, Burlington, 2005, pp. 283-313.
[37]
M. Kass, A.P. Witkin, D. Terzopoulos, Snakes, Int. J. Comput. Vis., 1 (1988) 321-331.
[38]
C. Xu, J.L. Prince, Snakes, shapes, and gradient vector flow, IEEE Trans. Image Process., 7 (1998) 359-369.
[39]
A. Gelzinis, A. Verikas, M. Bacauskiene, E. Vaiciukynas, Learning accurate active contours, in: L. Iliadis, H. Papadopoulos, C. Jayne (Eds.), Engineering Applications of Neural Networks, Communications in Computer and Information Science, vol. 383, Springer, Berlin, Heidelberg, 2013, pp. 396-405.
[40]
L. Breiman, Random forests, Mach. Learn., 45 (2001) 5-32.
[41]
M. Shemesh, O. Ben-Shahar, Free boundary conditions active contours with applications for vision, in: G. Bebis, R. Boyle, B. Parvin, D. Koracin, S. Wang, K. Kyungnam, B. Benes, K. Moreland, C. Borst, S. DiVerdi, C. Yi-Jen, J. Ming (Eds.), Advances in Visual Computing, Lecture Notes in Computer Science, vol. 6938, Springer, Berlin, Heidelberg, 2011, pp. 180-191, http://dx.doi.org/10.1007/978-3-642-24028-7-17
[42]
J.H. McDonald, Handbook of Biological Statistics, Sparky House Publishing, Baltimore, Maryland, USA, 2015.
[43]
X. Romão, R. Delgado, A. Costa, An empirical power comparison of univariate goodness-of-fit tests for normality, J. Stat. Comput. Simul., 80 (2010) 545-591.
[44]
J.M. Bland, D.G. Altman, Applying the right statistics, Ultrasound Obstet. Gynecol., 22 (2003) 85-93.
[45]
D.J. Kushner, Self-assembly of biological structures, Bacteriol. Rev., 33 (1969) 302-345.
[46]
A.A. Aksyuk, M.G. Rossmann, Bacteriophage assembly, Viruses, 3 (2011) 172-203.
[47]
D.E. Bradley, Ultrastructure of bacteriophage and bacteriocins, Bacteriol. Rev., 31 (1967) 230-314.
[48]
A. Fokine, P. Chipman, P. Leiman, V. Mesyanzhinov, V. Rao, M. Rossmann, Molecular architecture of the prolate head of bacteriophage T4, Proc. Natl. Acad. Sci. U.S.A., 101 (2004) 6003-6008.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computers in Biology and Medicine
Computers in Biology and Medicine  Volume 64, Issue C
September 2015
360 pages

Publisher

Pergamon Press, Inc.

United States

Publication History

Published: 01 September 2015

Author Tags

  1. Aphanizomenon flos-aquae
  2. Bacteriophage
  3. Bland-Altman
  4. Cyanobacteria
  5. Cyanophage
  6. Electron microscopy
  7. Open active contours
  8. Pattern recognition
  9. Random forest
  10. Vb-AphaS- CL131

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media