[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Energy-efficient mechanisms in security of the internet of things

Published: 09 November 2017 Publication History

Abstract

Security primitives in the IoT (Internet of Things) are energy consuming. Finding the best solutions that reduce energy consumption while ensuring the required security services is not an easy task. Many works proposed in the literature address security overhead issues by tackling some aspects such as cryptographic primitives, deployment environments, target applications, etc.This paper is a survey on energy-efficient mechanisms used in IoT security services. By studying the techniques that allow developing energy-efficient security solutions, it goes further than the previous surveys which focus more on the energy-efficient solutions themselves. To the best of our knowledge, this is the first work that tackles IoT security from this perspective. Not only security issues are addressed in this survey, but the energy impact of the solutions are also discussed. Energy consumption related to security services is first introduced. A taxonomy is then proposed for energy-efficient mechanisms in IoT security. The main factors affecting the application of an energy-saving technique for security solutions are finally analyzed.

References

[1]
L. Atzori, A. Iera, G. Morabito, The internet of things: a survey, Comput. Netw., 54 (2010) 2787-2805.
[2]
D. Miorandi, S. Sicari, F.D. Pellegrini, I. Chlamtac, Internet of things: vision, applications and research challenges, Ad Hoc Netw., 10 (2012) 1497-1516.
[3]
R. Roman, C. Alcaraz, J. Lopez, N. Sklavos, Key management systems for sensor networks in the context of the internet of things, Comput. Electr. Eng., 37 (2011) 147-159.
[4]
Z. Yan, P. Zhang, A.V. Vasilakos, A survey on trust management for internet of things, J. Netw. Comput. Appl., 42 (2014) 120-134.
[5]
K.T. Nguyen, M. Laurent, N. Oualha, Survey on secure communication protocols for the internet of things, Ad Hoc Netw., 32 (2015) 17-31.
[6]
R. Roman, J. Zhou, J. Lopez, On the features and challenges of security and privacy in distributed internet of things, Comput. Netw., 57 (2013) 2266-2279.
[7]
J. Granjal, E. Monteiro, J.S. Silva, Security in the integration of low-power wireless sensor networks with the internet: a survey, Ad Hoc Netw., 24, Part A (2015) 264-287.
[8]
J. Granjal, E. Monteiro, J.S. Silva, Security for the internet of things: a survey of existing protocols and open research issues, IEEE Commun. Surv. Tut., 17 (2015) 1294-1312.
[9]
S. Sicari, A. Rizzardi, L. Grieco, A. Coen-Porisini, Security, privacy and trust in internet of things: the road ahead, Comput. Netw., 76 (2015) 146-164.
[10]
R.H. Weber, Internet of things - new security and privacy challenges, Comput. Law Secur. Rev., 26 (2010) 23-30.
[11]
C. Karlof, N. Sastry, D. Wagner, Tinysec: a link layer security architecture for wireless sensor networks, ACM, New York, NY, USA, 2004.
[12]
Y.W. Law, J. Doumen, P. Hartel, Survey and benchmark of block ciphers for wireless sensor networks, ACM Trans. Sen. Netw., 2 (2006) 65-93.
[13]
J. Daemen, V. Rijmen, Aes proposal: Rijndael, 1999.
[14]
R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 21 (1978) 120-126.
[15]
NIST, Skipjack and kea algorithm specifications version 2.0. nist, 1998.
[16]
J. Lopez, Unleashing public-key cryptography in wireless sensor networks, J. Comput. Secur., 14 (2006) 469-482.
[17]
D. Boneh, M. Franklin, Identity-Based Encryption from the Weil Pairing, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 213229.
[18]
F. Bergadano, D. Cavagnino, B. Crispo, Individual single source authentication on the mbone, 2000.
[19]
Z. Benenson, N. Gedicke, O. Raivio, Realizing robust user authentication in sensor networks, Real-World Wireless Sensor Netw. (REALWSN), 14 (2005) 52.
[20]
S. Banerjee, D. Mukhopadhyay, Symmetric key based authenticated querying in wireless sensor networks, ACM, New York, NY, USA, 2006.
[21]
A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, D.E. Culler, Spins: security protocols for sensor networks, Wirel. Netw., 8 (2002) 521-534.
[22]
G. Gaubatz, J.-P. Kaps, B. Sunar, Public Key Cryptography in Sensor NetworksRevisited, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 218.
[23]
A. Sahai, B. Waters, Fuzzy Identity-Based Encryption, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 457473.
[24]
T. ElGamal, A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 10-18.
[25]
A.J. Menezes, S.A. Vanstone, P.C.V. Oorschot, Handbook of Applied Cryptography, CRC Press, Inc., Boca Raton, FL, USA, 1996.
[26]
L. Eschenauer, V.D. Gligor, A key-management scheme for distributed sensor networks, ACM, New York, NY, USA, 2002.
[27]
D. Liu, P. Ning, Location-based pairwise key establishments for static sensor networks, ACM, New York, NY, USA, 2003.
[28]
H. Chan, A. Perrig, D. Song, Random key predistribution schemes for sensor networks, 2003.
[29]
H. Chan, A. Perrig, Pike: peer intermediaries for key establishment in sensor networks, 2005.
[30]
A. Fanian, M. Berenjkoub, H. Saidi, T.A. Gulliver, A scalable and efficient key establishment protocol for wireless sensor networks, 2010.
[31]
F.L.M.N.K.N.J. Arkko, E. Carrara, MIKEY: Multimedia Internet KEYing, IETF RFC 3830, Technical Report, 2004 August.
[32]
C. Kaufman, Internet Key Exchange (IKEv2) Protocol, IETF RFC 4306, Technical Report, 2005 December.
[33]
P.J.R. Moskowitz, P. Nikander, T. Henderson, Host Identity Protocol, IETF RFC 5201, 2008.
[34]
W. Diffie, M. Hellman, New directions in cryptography, IEEE Trans. Inf. Theory, 22 (1976) 644-654.
[35]
R. Watro, D. Kong, S.-f. Cuti, C. Gardiner, C. Lynn, P. Kruus, Tinypk: Securing sensor networks with public key technology, ACM, New York, NY, USA, 2004.
[36]
W. Hu, P. Corke, W.C. Shih, L. Overs, secFleck: A Public Key Technology Platform for Wireless Sensor Networks, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 296311.
[37]
A. Shamir, Identity-Based Cryptosystems and Signature Schemes, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 4753.
[38]
L.B. Oliveira, M. Scott, J. Lopez, R. Dahab, Tinypbc: Pairings for authenticated identity-based non-interactive key distribution in sensor networks, 2008.
[39]
V. Manral, Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH), IETF RFC 4835, 2007.
[40]
E.R.T. Dierks, The Transport Layer Security (TLS) Protocol Version 1.2, IETF RFC 5246, 2008.
[41]
E. Rescorla, N. Modadugu, Datagram transport layer security version 1.2(2012).
[42]
S. Even, O. Goldreich, S. Micali, On-line/off-line digital signatures, J. Cryptol., 9 (1996) 35-67.
[43]
C.P. Schnorr, Efficient Identification and Signatures for Smart Cards, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 688689.
[44]
S. Pelissier, T. Prabhakar, H. Jamadagni, R. VenkateshaPrasad, I. Niemegeers, Providing security in energy harvesting sensor networks, 2011.
[45]
C.P. Schnorr, Efficient signature generation by smart cards, J. Cryptol., 4 (1991) 161-174.
[46]
E.F. Brickell, K.S. McCurley, An interactive identification scheme based on discrete logarithms and factoring, J. Cryptol., 5 (1992) 29-39.
[47]
P. de Rooij, On the Security of the Schnorr Scheme using preprocessing, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 7180.
[48]
P. de Rooij, On schnorrs preprocessing for digital signature schemes, J. Cryptol., 10 (1997) 1-16.
[49]
E.F. Brickell, D.M. Gordon, K.S. McCurley, D.B. Wilson, Fast Exponentiation with Precomputation, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 200207.
[50]
P. de Rooij, Efficient Exponentiation Using Precomputation and Vector Addition Chains, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 389399.
[51]
F. Guo, Y. Mu, Z. Chen, Identity-Based Online/Offline Encryption, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 247261.
[52]
Z. Liu, L. Xu, Z. Chen, Y. Mu, F. Guo, Hierarchical identity-based online/offline encryption, 2008.
[53]
J.K. Liu, J. Zhou, An Efficient Identity-Based Online/Offline Encryption Scheme, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 156167.
[54]
S.S.M. Chow, J.K. Liu, J. Zhou, Identity-based online/offline key encapsulation and encryption, ACM, New York, NY, USA, 2011.
[55]
S.S.D. Selvi, S.S. Vivek, C.P. Rangan, Identity Based Online/Offline Encryption and Signcryption Schemes Revisited, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 111127.
[56]
D. Boneh, X. Boyen, Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 223238.
[57]
C. Gentry, Practical Identity-Based Encryption Without Random Oracles, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 445464.
[58]
S. Hohenberger, B. Waters, Online/Offline Attribute-Based Encryption, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 293310.
[59]
Y. Rouselakis, B. Waters, Practical constructions and new proof methods for large universe attribute-based encryption, ACM, New York, NY, USA, 2013.
[60]
A. Shamir, Y. Tauman, Improved online/offline signature schemes, Springer-Verlag, London, UK, UK, 2001.
[61]
H. Krawczyk, T. Rabin, Chameleon signatures., 2000.
[62]
G. Bianchi, A.T. Capossele, C. Petrioli, D. Spenza, Agree: exploiting energy harvesting to support data-centric access control in {WSNs}, Ad Hoc Netw., 11 (2013) 2625-2636.
[63]
J. Bethencourt, A. Sahai, B. Waters, Ciphertext-policy attribute-based encryption, 2007.
[64]
W. Hu, H. Tan, P. Corke, W.C. Shih, S. Jha, Toward trusted wireless sensor networks, ACM Trans. Sen. Netw., 7 (2010) 5:1-5:25.
[65]
R.M. Needham, D.J. Wheeler, Tea extensions, Cambridge University, Cambridge, UK, 1997.
[66]
T.C. Group, Trusted Platform Module Specification, 2014.
[67]
T. Kothmayr, C. Schmitt, W. Hu, M. Brnig, G. Carle, A dtls based end-to-end security architecture for the internet of things with two-way authentication, 2012.
[68]
T. Kothmayr, C. Schmitt, W. Hu, M. Brnig, G. Carle, {DTLS} based security and two-way authentication for the internet of things, Ad Hoc Netw., 11 (2013) 2710-2723.
[69]
M. Barbareschi, E. Battista, A. Mazzeo, S. Venkatesan, Advancing wsn physical security adopting tpm-based architectures, 2014.
[70]
Y.M. Yussoff, H. Hashim, M.D. Baba, Identity-based trusted authentication in wireless sensor network, arXiv preprintarXiv:1207.6185 (2012).
[71]
L. Touati, Y. Challal, A. Bouabdallah, C-cp-abe: Cooperative ciphertext policy attribute-based encryption for the internet of things, 2014.
[72]
L. Touati, Y. Challal, Collaborative kp-abe for cloud-based internet of things applications, 2016.
[73]
V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based encryption for fine-grained access control of encrypted data, ACM, New York, NY, USA, 2006.
[74]
M. Green, S. Hohenberger, B. Waters, Outsourcing the decryption of abe ciphertexts, USENIX Association, Berkeley, CA, USA, 2011.
[75]
S. Hohenberger, A. Lysyanskaya, How to securely outsource cryptographic computations, Springer-Verlag, Berlin, Heidelberg, 2005.
[76]
B. Chevallier-Mames, J.-S. Coron, N. McCullagh, D. Naccache, M. Scott, Secure Delegation of Elliptic-Curve Pairing, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 2435.
[77]
Y.B. Saied, A. Olivereau, D. Zeghlache, M. Laurent, Lightweight collaborative key establishment scheme for the internet of things, Comput. Netw., 64 (2014) 273-295.
[78]
M. Watson, Basic Forward Error Correction (FEC) Schemes, RFC 5445, 2009.
[79]
A. Shamir, How to share a secret, Commun. ACM, 22 (1979) 612-613.
[80]
E. Yuan, N. Esfahani, S. Malek, A systematic survey of self-protecting software systems, ACM Trans. Auton. Adapt. Syst., 8 (2014) 17:1-17:41.
[81]
C.T. Hager, Virginia Polytechnic Institute and State University, 2004.
[82]
W. Trappe, R. Howard, R.S. Moore, Low-energy security: limits and opportunities in the internet of things, IEEE Secur. Privacy, 13 (2015) 14-21.
[83]
X. Li, M.R. Lyu, J. Liu, A trust model based routing protocol for secure ad hoc networks, 2004.
[84]
C. Chigan, L. Li, Y. Ye, Resource-aware self-adaptive security provisioning in mobile ad hoc networks, IEEE, 2005.
[85]
M. Younis, N. Krajewski, O. Farrag, Adaptive security provision for increased energy efficiency in wireless sensor networks, 2009.
[86]
H. Hellaoui, A. Bouabdallah, M. Koudil, Tas-iot: trust-based adaptive security in the iot, 2016.
[87]
M. Hamdi, H. Abie, Game-based adaptive security in the internet of things for ehealth, 2014.
[88]
E.K. Wang, T.-Y. Wu, C.-M. Chen, Y. Ye, Z. Zhang, F. Zou, MDPAS: Markov Decision Process Based Adaptive Security for Sensors in Internet of Things, Springer International Publishing, Cham, pp. 389397.
[89]
A.V. Taddeo, L. Micconi, A. Ferrante, Gradual adaptation of security for sensor networks, 2010.
[90]
A. Taddeo, M. Mura, A. Ferrante, Qos and security in energy-harvesting wireless sensor networks, 2010.
[91]
A.D. Mauro, X. Fafoutis, N. Dragoni, Adaptive security in odmac for multihop energy harvesting wireless sensor networks, Int. J. Distrib. Sen. Netw., 2015 (2015) 68:68-68:68.
[92]
E.Y.A. Lin, J.M. Rabaey, A. Wolisz, Power-efficient rendez-vous schemes for dense wireless sensor networks, 2004.
[93]
P. Keeratiwintakorn, P. Krishnamurthy, Energy efficient security services for limited wireless devices, 2006.
[94]
M.O. Rabin, Digitalized Signatures and Public-Key Functions as Intractable as Factorization, 1979.
[95]
G. Murphy, A. Keeshan, R. Agarwal, E. Popovici, Hardware - software implementation of public-key cryptography for wireless sensor networks, 2006.
[96]
Y. Oren, M. Feldhofer, A low-resource public-key identification scheme for rfid tags and sensor nodes, ACM, New York, NY, USA, 2009.
[97]
N. Koblitz, Elliptic curve cryptosystems, Math. Comput., 48 (1987) 203-209.
[98]
D. Hankerson, A.J. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptography, Springer Science & Business Media, 2004.
[99]
N. Gura, A. Patel, A. Wander, H. Eberle, S.C. Shantz, Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 119132.
[100]
A.S. Wander, N. Gura, H. Eberle, V. Gupta, S.C. Shantz, Energy analysis of public-key cryptography for wireless sensor networks, 2005.
[101]
R. McEliece, A public-key cryptosystem based on algebraic(1978).
[102]
P. Loidreau, Strengthening McEliece Cryptosystem, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 585598.
[103]
T. Eisenbarth, T. Gneysu, S. Heyse, C. Paar, MicroEliece: McEliece for Embedded Devices, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 4964.
[104]
S. Heyse, I. von Maurich, T. Gneysu, Smaller Keys for Code-Based Cryptography: QC-MDPC McEliece Implementations on Embedded Devices, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 273292.
[105]
D.J. Bernstein, T. Lange, C. Peters, Attacking and Defending the McEliece Cryptosystem, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 3146.
[106]
J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A Ring-Based Public Key Cryptosystem, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 267288.
[107]
D.V. Bailey, D. Coffin, A. Elbirt, J.H. Silverman, A.D. Woodbury, NTRU in Constrained Devices, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 262272.
[108]
G. Gaubatz, J.P. Kaps, E. Ozturk, B. Sunar, State of the art in ultra-low power public key cryptography for wireless sensor networks, 2005.
[109]
B. Biswas, N. Sendrier, McEliece Cryptosystem Implementation: Theory and Practice, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 4762.
[110]
T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, L. Uhsadel, A survey of lightweight-cryptography implementations, IEEE Design Test Comput., 24 (2007) 522-533.
[111]
C. De Cannire, O. Dunkelman, M. Kneevi, KATAN and KTANTAN A Family of Small and Efficient Hardware-Oriented Block Ciphers, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 272288.
[112]
Z. Gong, S. Nikova, Y.W. Law, KLEIN: A New Family of Lightweight Block Ciphers, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 118.
[113]
C.H. Lim, T. Korkishko, mCrypton A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 243258.
[114]
K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, T. Shirai, Piccolo: An Ultra-Lightweight Blockcipher, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 342357.
[115]
A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin, C. Vikkelsoe, PRESENT: An Ultra-Lightweight Block Cipher, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 450466.
[116]
T. Suzaki, K. Minematsu, S. Morioka, E. Kobayashi, TWINE: A Lightweight Block Cipher for Multiple Platforms, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 339354.
[117]
H. Yap, K. Khoo, A. Poschmann, M. Henricksen, EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 7697.
[118]
R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, L. Wingers, The simon and speck families of lightweight block ciphers. cryptology eprint archive, 2013.
[119]
eSTREAM, Stream cipher project, 20042008, (http://www.ecrypt.eu.org/stream/). Accessed: July 2017.
[120]
H. Wu, The Stream Cipher HC-128, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 3947.
[121]
M. Boesgaard, M. Vesterager, E. Zenner, The Rabbit Stream Cipher, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 6983.
[122]
D.J. Bernstein, The Salsa20 Family of Stream Ciphers, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 8497.
[123]
C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, H. Sibert, Sosemanuk, a Fast Software-Oriented Stream Cipher, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 98118.
[124]
M. Hell, T. Johansson, W. Meier, Grain: a stream cipher for constrained environments, Int. J. Wireless Mobile Comput., 2 (2007) 86-93.
[125]
S. Babbage, M. Dodd, The MICKEY Stream Ciphers, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 191209.
[126]
C. De Canniere, B. Preneel, Trivium specifications, Citeseer, 2005.
[127]
C. Manifavas, G. Hatzivasilis, K. Fysarakis, Y. Papaefstathiou, A survey of lightweight stream ciphers for embedded systems, Secur. Commun. Netw., 9 (2016) 1226-1246.
[128]
M. Bloch, J. Barros, Physical-layer security: from information theory to security engineering, Cambridge University Press, 2011.
[129]
A. Mukherjee, Physical-layer security in the internet of things: sensing and communication confidentiality under resource constraints, Proc. IEEE, 103 (2015) 1747-1761.
[130]
A.D. Wyner, The wire-tap channel, Bell Syst. Tech. J., 54 (1975) 1355-1387.
[131]
I. Csiszar, J. Korner, Broadcast channels with confidential messages, IEEE Trans. Inf. Theory, 24 (1978) 339-348.
[132]
Y. Liang, H.V. Poor, S. Shamai, Secure communication over fading channels, IEEE Trans. Inf. Theory, 54 (2008) 2470-2492.
[133]
P.K. Gopala, L. Lai, H.E. Gamal, On the secrecy capacity of fading channels, IEEE Trans. Inf. Theory, 54 (2008) 4687-4698.
[134]
A. Khisti, G.W. Wornell, Secure transmission with multiple antennas i: the misome wiretap channel, IEEE Trans. Inf. Theory, 56 (2010) 3088-3104.
[135]
F. Oggier, B. Hassibi, The secrecy capacity of the mimo wiretap channel, IEEE Trans. Inf. Theory, 57 (2011) 4961-4972.
[136]
Y. Liang, H.V. Poor, Multiple-access channels with confidential messages, IEEE Trans. Inf. Theory, 54 (2008) 976-1002.
[137]
E. Tekin, A. Yener, The gaussian multiple access wire-tap channel, IEEE Trans. Inf. Theory, 54 (2008) 5747-5755.
[138]
Y. Liang, H.V. Poor, S. Shamai (Shitz), Information theoretic security, Found. Trends Commun. Inf. Theory, 5 (2009) 355-580.
[139]
U.M. Maurer, Secret key agreement by public discussion from common information, IEEE Trans. Inf. Theory, 39 (1993) 733-742.
[140]
R. Ahlswede, I. Csiszar, Common randomness in information theory and cryptography. i. secret sharing, IEEE Trans. Inf. Theory, 39 (1993) 1121-1132.
[141]
Y. Shen, M.Z. Win, Intrinsic information of wideband channels, IEEE J. Sel. Areas Commun., 31 (2013) 1875-1888.
[142]
L. Lai, Y. Liang, H.V. Poor, A unified framework for key agreement over wireless fading channels, IEEE Trans. Inf. Forensics Secur., 7 (2012) 480-490.
[143]
G. Pasolini, D. Dardari, Secret information of wireless multi-dimensional gaussian channels, IEEE Trans. Wireless Commun., 14 (2015) 3429-3442.
[144]
S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt, U. Roedig, Securing communication in 6lowpan with compressed ipsec, 2011.
[145]
S. Raza, D. Trabalza, T. Voigt, 6lowpan compressed dtls for coap, 2012.
[146]
S. Raza, H. Shafagh, K. Hewage, R. Hummen, T. Voigt, Lithe: lightweight secure coap for the internet of things, IEEE Sens. J., 13 (2013) 3711-3720.
[147]
L.E. Lighfoot, J. Ren, T. Li, An energy efficient link-layer security protocol for wireless sensor networks, 2007.
[148]
Y. Cheng, J. Ren, Z. Wang, S. Mei, J. Zhou, Attributes union in cp-abe algorithm for large universe cryptographic access control, 2012.
[149]
C. Chen, Z. Zhang, D. Feng, Efficient Ciphertext Policy Attribute-Based Encryption with Constant-Size Ciphertext and Constant Computation-Cost, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 84101.
[150]
J. Herranz, F. Laguillaumie, C. Rfols, Constant Size Ciphertexts in Threshold Attribute-Based Encryption, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1934.
[151]
N. Attrapadung, J. Herranz, F. Laguillaumie, B. Libert, E. de Panafieu, C. Rfols, Attribute-based encryption schemes with constant-size ciphertexts, Theor. Comput. Sci., 422 (2012) 15-38.
[152]
C. Wang, J. Luo, An efficient key-policy attribute-based encryption scheme with constant ciphertext length, Math. Probl. Eng., 2013 (2013).
[153]
S. Sahraoui, A. Bilami, Efficient hip-based approach to ensure lightweight end-to-end security in the internet of things, Comput. Netw., 91 (2015) 26-45.
[154]
J. Mache, C.Y. Wan, M. Yarvis, Exploiting heterogeneity for sensor network security, 2008.
[155]
Y. Saied, A. Olivereau, D-hip: a distributed key exchange scheme for hip-based internet of things, 2012.
[156]
N.T. Courtois, M. Finiasz, N. Sendrier, How to Achieve a McEliece-Based Digital Signature Scheme, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 157174.

Cited By

View all
  • (2024)Can serious gaming tactics bolster spear-phishing and phishing resilience? Information and Software Technology10.1016/j.infsof.2024.107426170:COnline publication date: 1-Jun-2024
  • (2023)A comparative study of energy efficient algorithms for IoT applications based on WSNsMultimedia Tools and Applications10.1007/s11042-023-14813-382:27(42239-42275)Online publication date: 11-Apr-2023
  • (2022)Achieving efficient energy-aware security in IoT networks: a survey of recent solutions and research challengesWireless Networks10.1007/s11276-022-03170-y29:2(787-808)Online publication date: 1-Nov-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computer Networks: The International Journal of Computer and Telecommunications Networking
Computer Networks: The International Journal of Computer and Telecommunications Networking  Volume 127, Issue C
November 2017
350 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 09 November 2017

Author Tags

  1. Energy efficiency
  2. Internet of Things (IoT)
  3. Security

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Can serious gaming tactics bolster spear-phishing and phishing resilience? Information and Software Technology10.1016/j.infsof.2024.107426170:COnline publication date: 1-Jun-2024
  • (2023)A comparative study of energy efficient algorithms for IoT applications based on WSNsMultimedia Tools and Applications10.1007/s11042-023-14813-382:27(42239-42275)Online publication date: 11-Apr-2023
  • (2022)Achieving efficient energy-aware security in IoT networks: a survey of recent solutions and research challengesWireless Networks10.1007/s11276-022-03170-y29:2(787-808)Online publication date: 1-Nov-2022
  • (2022)A survey on internet of energy security: related fields, challenges, threats and emerging technologiesCluster Computing10.1007/s10586-021-03423-z25:4(2449-2485)Online publication date: 1-Aug-2022
  • (2022)Robotics cyber security: vulnerabilities, attacks, countermeasures, and recommendationsInternational Journal of Information Security10.1007/s10207-021-00545-821:1(115-158)Online publication date: 1-Feb-2022
  • (2021)LLSFIoTWireless Communications & Mobile Computing10.1155/2021/85262062021Online publication date: 1-Jan-2021
  • (2021)IoT-Based Smart Management of Healthcare Services in Hospital Buildings during COVID-19 and Future PandemicsWireless Communications & Mobile Computing10.1155/2021/55331612021Online publication date: 1-Jan-2021
  • (2021)A Quantitative Study of Energy Consumption for Embedded Security2021 IEEE Wireless Communications and Networking Conference (WCNC)10.1109/WCNC49053.2021.9417382(1-5)Online publication date: 29-Mar-2021
  • (2020)Multi-criteria-Based Mobile Hotspot Selection in IoT-Based Highly Dense NetworkWireless Personal Communications: An International Journal10.1007/s11277-020-07122-7112:3(1689-1704)Online publication date: 1-Jun-2020
  • (2019)How persuasive is a phishing email? A phishing game for phishing awarenessJournal of Computer Security10.3233/JCS-18125327:6(581-612)Online publication date: 1-Jan-2019

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media