[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Finding long and similar parts of trajectories

Published: 01 November 2011 Publication History

Abstract

A natural time-dependent similarity measure for two trajectories is their average distance at corresponding times. We give algorithms for computing the most similar subtrajectories under this measure, assuming the two trajectories are given as two polygonal, possibly self-intersecting lines with time stamps. For the case when a minimum duration of the subtrajectories is specified and the subtrajectories must start at corresponding times, we give a linear-time algorithm. The algorithm is based on a result of independent interest: We present a linear-time algorithm to find, for a piece-wise monotone function, an interval of at least a given length that has minimum average value. In the case that the subtrajectories may start at non-corresponding times, it appears difficult to give exact algorithms, even if the duration of the subtrajectories is fixed. For this case, we give (1+@e)-approximation algorithms, for both fixed duration and when only a minimum duration is specified.

References

[1]
Barequet, G., Chen, D.Z., Daescu, O., Goodrich, M.T. and Snoeyink, J., Efficiently approximating polygonal paths in three and higher dimensions. Algorithmica. v33. 150-167.
[2]
T. Bernholt, F. Eisenbrand, T. Hofmeister, A geometric framework for solving subsequence problems in computational biology efficiently, in: Proc. 23rd ACM Symp. on Comput. Geom. (SOCG¿07), 2007, pp. 310-318.
[3]
Buchin, K., Buchin, M. and Gudmundsson, J., Constrained free space diagrams: a tool for trajectory analysis. International Journal of Geographical Information Science. v24. 1101-1125.
[4]
K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, J. Luo, Detecting commuting patterns by clustering subtrajectories, Int. J. Comput. Geom. and Appl., Special Issue: Selected Papers from the 19th Int. Symp. on Algorithms and Computation (ISAAC¿08), in press.
[5]
K. Buchin, M. Buchin, Y. Wang, Exact algorithms for partial curve matching via the Fréchet distance, in: Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA¿09), 2009, pp. 645-654.
[6]
Cao, H., Wolfson, O. and Trajcevski, G., Spatio-temporal data reduction with deterministic error bounds. VLDB Journal. v15. 211-228.
[7]
Chung, K.-M. and Lu, H.-I., An optimal algorithm for the maximum-density segment problem. SIAM J. Comput. v34. 373-387.
[8]
L. Chen, M. Tamer Özsu, V. Oria, Robust and fast similarity search for moving object trajectories, in: Proc. 2005 ACM SIGMOD Int. Conf. on Management of data (SIGMOD¿05), 2005, pp. 491-502.
[9]
E. Frentzos, K. Gratsias, Y. Theodoridis, Index-based most similar trajectory search, in: Proc. IEEE 23rd Int. Conf. on Data Engineering, 2007, pp. 816-825.
[10]
Goldwasser, M.H., Kao, M.-Y. and Lu, H.-I., Linear-time algorithms for computing maximum-density sequence segments with bioinformatics applications. J. Comput. Syst. Sci. v70. 128-144.
[11]
J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong, T. Wolle, Compressing spatio-temporal trajectories, in: Proc. Int. Symp. on Algorithms and Computation (ISAAC¿07), 2007, pp. 763-775.
[12]
Gudmundsson, J., Laube, P. and Wolle, T., Movement patterns in spatio-temporal data. In: Shekhar, S., Xiong, H. (Eds.), Encyclopedia of GIS, Springer, Heidelberg. pp. 726-732.
[13]
Halperin, D., Arrangements. In: Goodman, J.E., O'Rourke, J. (Eds.), Handbook of Discrete and Computational Geometry, CRC Press. pp. 389-412.
[14]
E.J. Keogh, M.J. Pazzani, Scaling up dynamic time warping for datamining applications, in: Proc. 4th Asia-Pacific Conf. on Knowledge Discovery and Data Mining (PADKK¿00), 2000, pp. 285-289.
[15]
M. van Kreveld, J. Luo, The definition and computation of trajectory and subtrajectory similarity, in: Proc. 15th ACM Int. Symp. on Geographic Information Systems (ACM-GIS¿07), 2007, pp. 44-47.
[16]
Lee, J., Han, J., Li, X. and Gonzalez, H., TraClass: Trajectory classification using hierarchical region-based and trajectory-based clustering. Proceedings of the VLDB Endowment. v1. 1081-1094.
[17]
J. Lee, J. Han, K.-Y. Whang, Trajectory clustering: a partition-and-group framework, in: Proc. 2007 ACM SIGMOD International Conference on Management of Data (SIGMOD¿07), 2007, pp. 593-604.
[18]
Lin, Y.-L., Jiang, T. and Chao, K.-M., Efficient algorithms for locating the length-constrained heaviest segments with applications to biomolecular sequence analysis. J. Comput. Syst. Sci. v65. 570-586.
[19]
Nanni, M. and Pedreschi, D., Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. v27. 267-289.
[20]
Sinha, G. and Mark, D.M., Measuring similarity between geospatial lifelines in studies of environment health. J. Geographical Systems. v7. 115-136.
[21]
G. Trajcevski, H. Ding, P. Scheuermann, R. Tamassia, D. Vaccaro, Dynamics-aware similarity of moving objects trajectories, in: Proc. 15th ACM Int. Symp. on Geographic Information Systems (ACM-GIS¿07), 2007, pp. 1-8.
[22]
Vlachos, M., Kollios, G. and Gunopulous, D., Discovering similar multidimensional trajectories. In: Proc. 18th International Conference on Data Engineering (ICDE¿02), pp. 673-684.
[23]
M. Vlachos, D. Gunopulos, G. Das, Rotation invariant distance measures for trajectories, in: Proc. 10th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD¿04), 2004, pp. 707-712.
[24]
Y. Yanagisawa, J. Akahani, T. Satoh, Shape-based similarity query for trajectory of mobile objects, in: Proc. 4th Int. Conf. on Mobile Data Management (MDM¿03), 2003, pp. 63-77.

Cited By

View all
  • (2023)Improvements (or not!) in the hand trajectory of stroke patients due to practice of a virtual gameAdaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems10.1177/1059712323116359531:4(365-378)Online publication date: 29-Jun-2023
  • (2020)Distributed Subtrajectory Join on Massive DatasetsACM Transactions on Spatial Algorithms and Systems10.1145/33736426:2(1-29)Online publication date: 4-Feb-2020
  • (2019)An Experimental Evaluation of Grouping Definitions for Moving EntitiesProceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/3347146.3359346(89-98)Online publication date: 5-Nov-2019
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computational Geometry: Theory and Applications
Computational Geometry: Theory and Applications  Volume 44, Issue 9
November, 2011
79 pages

Publisher

Elsevier Science Publishers B. V.

Netherlands

Publication History

Published: 01 November 2011

Author Tags

  1. Moving objects
  2. Similarity measure
  3. Trajectory analysis

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Improvements (or not!) in the hand trajectory of stroke patients due to practice of a virtual gameAdaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems10.1177/1059712323116359531:4(365-378)Online publication date: 29-Jun-2023
  • (2020)Distributed Subtrajectory Join on Massive DatasetsACM Transactions on Spatial Algorithms and Systems10.1145/33736426:2(1-29)Online publication date: 4-Feb-2020
  • (2019)An Experimental Evaluation of Grouping Definitions for Moving EntitiesProceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/3347146.3359346(89-98)Online publication date: 5-Nov-2019
  • (2018)Subtrajectory ClusteringProceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems10.1145/3196959.3196972(75-87)Online publication date: 27-May-2018
  • (2017)Signature-Based Trajectory Similarity JoinIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2017.265182129:4(870-883)Online publication date: 1-Apr-2017
  • (2016)Virtual running of vehicle trajectories for automatic map generationProceedings of the 31st Annual ACM Symposium on Applied Computing10.1145/2851613.2851712(572-579)Online publication date: 4-Apr-2016
  • (2016)Identifying K Primary Corridors from urban bicycle GPS trajectories on a road networkInformation Systems10.1016/j.is.2015.10.00957:C(142-159)Online publication date: 1-Apr-2016
  • (2013)Computing similarity of coarse and irregular trajectories using space-time prismsProceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/2525314.2525459(456-459)Online publication date: 5-Nov-2013
  • (2013)Algorithms for hotspot computation on trajectory dataProceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/2525314.2525359(134-143)Online publication date: 5-Nov-2013
  • (2013)Finding frequent sub-trajectories with time constraintsProceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing10.1145/2505821.2505824(1-8)Online publication date: 11-Aug-2013
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media