[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Hemodynamics of different configurations of the left subclavian artery parallel stent graft for thoracic endovascular aortic repair

Published: 01 November 2023 Publication History

Highlights

Adopt multidisciplinary means of mathematics, fluid mechanics and clinical medicine.
Provide theoretical basis for the selection of parallel stent configurations.
Compensate for differences of physician's experience in parallel graft technique.
Predict complication risk after parallel graft technique from multiple perspectives.
Assist in formulating personalized and precise parallel graft technique schemes.

Abstract

Background and objective

Parallel (chimney and periscope) graft technique is an effective approach for left subclavian artery (LSA) reconstruction in patients treated by thoracic endovascular aortic repair (TEVAR) for the inadequate landing zone. However, certain stent graft (SG) configurations may promote thrombosis and reduce distal blood flow, increasing risks of cerebral infarction and reintervention.

Methods

In this paper, we first attempt to systematically evaluate the hemodynamic performances of different parallel graft techniques as potential determinants of complication risks. Based on the patient-specific 3D aortic geometry undergoing parallel graft technique, fifteen models in total for five kinds of LSA branched SG configurations (Forward, Backward, Extended, Elliptical and Periscopic) were designed virtually, and the hemodynamic discrepancies between them were analyzed by computational fluid dynamics.

Results

Results show that flow rate of patients undergoing periscope technique reduces by half compared with chimney technique, suggesting that periscope SG may cause more serious flow obstruction to LSA, leading to stroke. For chimney stent structure, the extension length 0has little influence on energy loss and other parameters. Conversely, hemodynamic differences between the retrograde curvature and the antegrade curvature are significant (time average WSS: 47.07%), so the retrograde curvature might prompt SG displacement. Furthermore, the flatter chimney SG induces more aggressive hemodynamic forces, among which the difference of the maximum WSS between the flatter SG and nearly round SG reaches 65.56%, leading to the greater risk of vascular wall damage.

Conclusions

Results obtained might provide suggestions for physicians to formulate appropriate parallel graft technique schemes in TEVAR.

References

[1]
F.J. Criado, M.F. Barnatan, Y. Rizk, N.S. Clark, C.F. Wang, Technical strategies to expand stent-graft applicability in the aortic arch and proximal descending thoracic aorta, J. Endovasc. Ther. 9 (2) (2002) II32–II38. Suppl.
[2]
R.J. Feezor, T.D. Martin, P.J. Hess, C.T. Klodell, T.M. Beaver, T.S. Huber, J.S. Seeger, W.A. Lee, Risk factors for perioperative stroke during thoracic endovascular aortic repairs (TEVAR), J. Endovasc. Ther. 14 (2007) 568–573.
[3]
R.J. Bradshaw, S.S. Ahanchi, O. Powell, S. Larion, C. Brandt, M.C. Soult, J.M. Panneton, Left subclavian artery revascularization in zone 2 thoracic endovascular aortic repair is associated with lower stroke risk across all aortic diseases, J. Vasc. Surg. 65 (5) (2017) 1270–1279.
[4]
G.R. Upchurch Jr., G.A. Escobar, A. Azizzadeh, A.W. Beck, M.F. Conrad, J.S. Matsumura, M.H. Mura, R.J. Perry, M.J. Singh, R.K. Veeraswamy, G.J. Wang, Society for vascular surgery clinical practice guidelines of thoracic endovascular aortic repair for descending thoracic aortic aneurysms, J. Vasc. Surg. 73 (2021) 55S–83S.
[5]
V. Riambau, D. Bockler, J. Brunkwall, P. Cao, R. Chiesa, G. Coppi, M. Czerny, G. Fraedrich, S. Haulon, M.J. Jacobs, M.L. Lachat, F.L. Moll, C. Setacci, P.R. Taylor, M. Thompson, S. Trimarchi, H.J. Verhagen, E.L. Verhoeven, ESVS Guidelines Committee, Editor's choice-management of descending thoracic aorta diseases: clinical practice guidelines of the european society for vascular surgery (ESVS), Eur. J. Vasc. Endovasc. Surg. 53 (2017) 4–52.
[6]
T.E. MacGillivray, T.G. Gleason, H.J. Patel, G.S. Aldea, J.E. Bavaria, T.M. Beaver, E.P. Chen, M. Czerny, A.L. Estrera, S. Firestone, M.P. Fischbein, G.C. Hughes, D.S. Hui, K. Kissoon, J.S. Lawton, D. Pacini, T.B. Reece, E.E. Roselli, J. Stulak, The society of thoracic surgeons/american association for thoracic surgery clinical practice guidelines on the management of type B aortic dissection, J. Thorac. Cardiovasc. Surg. 163 (2022) 1231–1249.
[7]
M. Czerny, J. Schmidli, S. Adler, J.C. van den Berg, L. Bertoglio, T. Carrel, R. Chiesa, R.E. Clough, B. Eberle, C. Etz, M. Grabenwöger, S. Haulon, H. Jakob, F.A. Kari, C.A. Mestres, D. Pacini, T. Resch, B. Rylski, F. Schoenhoff, M. Shrestha, H. von Tengg-Kobligk, K. Tsagakis, T.R. Wyss, Current options and recommendations for the treatment of thoracic aortic pathologies involving the aortic arch: an expert consensus document of the European Association for Cardio-Thoracic Surgery (EACTS) & the European Society for Vascular Surgery (ESVS), Eur. J. Vasc. Endovasc. Surg. 57 (2) (2019) 165–198.
[8]
X. Tong, J. Dong, G. Zhou, X. Zhang, A. Wang, Z. Ji, L. Jiao, Y. Mei, D. Chen, Hemodynamic effects of size and location of basilar artery fenestrations associated to pathological implications, Int. J. Numer. Method Biomed. Eng. 37 (9) (2021) e3507.
[9]
R. Tricarico, R. Tran-Son-Tay, L. Laquian, S.T. Scali, T.C. Lee, A.W. Beck, S.A. Berceli, Y. He, Haemodynamics of different configurations of a left subclavian artery stent graft for thoracic endovascular aortic repair, Eur. J. Vasc. Endovasc. 59 (1) (2020) 7–15.
[10]
Y. Qiao, L. Mao, T. Zhu, J. Fan, K. Luo, Biomechanical implications of the fenestration structure after thoracic endovascular aortic repair, J. Biomech. 99 (2020).
[11]
H. Kandail, M. Hamady, X.Y. Xu, Comparison of blood flow in branched and fenestrated stent-grafts for endovascular repair of abdominal aortic aneurysms, J. Endovasc. Ther. 22 (4) (2015) 578–590.
[12]
T.M. van Bakel, C.J. Arthurs, J.A. van Herwaarden, F.L. Moll, K.A. Eagle, H.J. Patel, S. Trimarchi, C.A. Figueroa, A computational analysis of different endograft designs for Zone 0 aortic arch repair, Eur. J. Cardio-Thorac. Surg. 54 (2) (2018) 389–396.
[13]
Q.Z. Chi, H. Chen, L.Z. Mu, Y. He, Y. Luan, Haemodynamic analysis of the relationship between the morphological alterations of the ascending aorta and the type A aortic-dissection disease, Fluid Dyn. Mater. Proc. 17 (2021) 721–743.
[14]
I.E. Vignon-Clementel, C.A. Figueroa, K.E. Jansen, C.A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Comput. Methods Appl. Mech. Eng. 195 (29–32) (2006) 3776–3796.
[15]
H. Xu, Z. Li, H. Dong, Y. Zhang, J. Wei, P.N. Watton, W. Guo, D. Chen, J. Xiong, Hemodynamic parameters that may predict false-lumen growth in type-B aortic dissection after endovascular repair: a preliminary study on long-term multiple follow-ups, Med. Eng. Phys. 50 (2017) 12–21.
[16]
Z. Xiong, P. Yang, D. Li, Y. Qiu, T. Zheng, J. Hu, A computational fluid dynamics analysis of a patient with acute non-A-non-B aortic dissection after type I hybrid arch repair, Med. Eng. Phys. 77 (2020) 43–52.
[17]
C. Chnafa, O. Brina, V.M. Pereira, D.A. Steinman, Better than nothing: a rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations, Am. J. Neuroradiol. 39 (2) (2018) 337–343.
[18]
R.M. Padmos, T.I. Józsa, W.K. El-Bouri, P.R. Konduri, S.J. Payne, A.G. Hoekstra, Coupling one-dimensional arterial blood flow to three-dimensional tissue perfusion models for in silico trials of acute ischaemic stroke, Interface Focus 11 (1) (2021).
[19]
E. Doutel, J. Carneiro, J.B.L.M. Campos, J.M. Miranda, Artificial stenoses for computational hemodynamics, Appl. Math. Model. 59 (2018) 427–440.
[20]
X. Zhang, M. Luo, K. Fang, J. Li, Y. Peng, L. Zheng, C. Shu, Analysis of the formation mechanism and occurrence possibility of Post-Stenotic Dilatation of the aorta by CFD approach, Comput. Methods Programs Biomed. 194 (2020).
[21]
M.M.U. Rehman, Z.G. Qu, R.P. Fu, H.T. Xu, Numerical study on free-surface jet impingement cooling with nanoencapsulated phase-change material slurry and nanofluid, Int. J. Heat Mass Transf. 109 (2017) 312–325.
[22]
M.S. Nagargoje, C. Valeti, N. Manjunath, B. Akhade, B.J. Sudhir, B.S.V. Patnaik, S.K. Kannath, Influence of morphological parameters on hemodynamics in internal carotid artery bifurcation aneurysms, Phys. Fluids 34 (10) (2022).
[23]
X. Zhang, L. Zheng, M. Luo, C. Shu, E. Wang, Evaluation of stent-graft implantations for intramural hematoma based on fluid-solid interaction analysis, Int. J. Mech. Sci. 180 (2020).
[24]
T.L. Chiu, A.Y. Tang, S.W. Cheng, K.W. Chow, Analysis of flow patterns on branched endografts for aortic arch aneurysms, Inform. Med. Unlocked 13 (2018) 62–70.
[25]
X. Zhang, D. Chen, M. Wu, H. Dong, Z. Wan, H. Jia, S. Liang, J. Shao, J. Zheng, S. Xu, J. Xiong, W. Guo, Functional evaluation of embedded modular single-branched stent graft: application to type B aortic dissection with aberrant right subclavian artery, Front. Cardiovasc. Med. 9 (2022) 1127.
[26]
Y. Qiao, K. Luo, J. Fan, Component quantification of aortic blood flow energy loss using computational fluid-structure interaction hemodynamics, Comput. Methods Program Biomed. 221 (2022).
[27]
P.M. Panchal, D.S. Hathi, N.K. Shah, A.M. Lakdawala, A numerical study on pulsatile non-Newtonian hemodynamics in double-fusiform abdominal aortic aneurysms, Phys. Fluids 34 (3) (2022).
[28]
X. Zhang, M. Luo, K. Fang, J. Li, Y. Peng, L. Zheng, C. Shu, Application of 3D curvature and torsion in evaluating aortic tortuosity, Commun. Nonlinear Sci. 95 (2021).
[29]
Y. Qiao, J. Luan, L. Mao, J. Fan, T. Zhu, K. Luo, Biomechanical mechanism of distal stent-graft-induced new entry deterioration after thoracic endovascular aortic repair, Phys. Fluids 34 (10) (2022).
[30]
M.S. Nagargoje, D.K. Mishra, R. Gupta, Pulsatile flow dynamics in symmetric and asymmetric bifurcating vessels, Phys. Fluids 33 (7) (2021).
[31]
M. Klineberg, Optimization and high flow on Vein Model system for hemodynamic characterization in hemodialysis population, (2023).
[32]
P.K. Singh, A. Marzo, B. Howard, D.A. Rufenacht, P. Bijlenga, A.F. Frangi, P.V. Lawford, S.C. Coley, D.R. Hose, U.J. Patel, Effects of smoking and hypertension on wall shear stress and oscillatory shear index at the site of intracranial aneurysm formation, Clin. Neurol. Neurosurg. 112 (4) (2010) 306–313.
[33]
Y. Mei, H. Xu, W. Ma, Z. Li, R. Yang, H. Yuan, Y. Peng, M. Wu, Z. Chen, W. Guo, T. Gao, J. Xiong, D. Chen, Retrograde branched extension limb assembling stent of pararenal abdominal aortic aneurysm: a longitudinal hemodynamic analysis for stent graft migration, Int. J. Numer. Method Biomed. Eng. 36 (11) (2020) e3394.
[34]
J.J. Hathcock, Flow effects on coagulation and thrombosis, Arterioscler. Thromb. Vasc. Biol. 26 (8) (2006) 1729–1737.
[35]
M.J. Bosiers, K.P. Donas, N. Mangialardi, G. Torsello, V. Riambau, F.J. Criado, F.J. Veith, S. Ronchey, S. Fazzini, M. Lachat, European multicenter registry for the performance of the chimney/snorkel technique in the treatment of aortic arch pathologic conditions, Ann. Thorac. Surg. 101 (6) (2016) 2224–2230.
[36]
J. Li, Y. Xue, S. Li, L. Sun, L. Wang, T. Wang, K. Fang, M. Luo, X. Li, H. He, M. Li, Q. Li, A. Dardik, C. Shu, Outcomes of thoracic endovascular aortic repair with chimney technique for aortic arch diseases, Front. Cardiovasc. Med. 9 (2022).
[37]
R. Tricarico, Y. He, R. Tran-Son-Tay, L. Laquian, A.W. Beck, S.A. Berceli, Anatomic and hemodynamic investigation of an occluded common carotid chimney stent graft for hybrid thoracic aortic aneurysm repair, J. Vasc. Surg. Cases Innov. Tech. 5 (2) (2019) 187–194.
[38]
H. Ding, Y. Liu, N. Xie, R. Fan, S. Luo, W. Huang, J. Li, Y. Zhu, B. Hu, L. Xue, J. Luo, Outcomes of chimney technique for preservation of the left subclavian artery in type B aortic dissection, Eur. J. Vasc. Endovasc. Surg. 57 (2019) 374–381.
[39]
A. Polanczyk, A. Piechota-Polanczyk, I. Huk, C. Neumayer, M. Strzelecki, Computational fluid dynamics as an engineering tool for the reconstruction of endovascular prosthesis endoleaks, IEEE Access 10 (2022) 18873–18885.
[40]
W.N. Wan Ab Naim, P.B. Ganesan, Z. Sun, K. Osman, E. Lim, The impact of the number of tears in patient-specific Stanford type B aortic dissecting aneurysm: CFD simulation, J. Mech. Med. Biol. 14 (02) (2014).
[41]
Y. Chen, S. Zhang, L. Liu, Q. Lu, T. Zhang, Z. Jing, Retrograde type A aortic dissection after thoracic endovascular aortic repair: a systematic review and meta-analysis, J. Am. Heart Assoc. 6 (2017).
[42]
M. Albadawi, Y. Abuouf, S. Elsagheer, S. Ookawara, M. Ahmed, Predicting the onset of consequent stenotic regions in carotid arteries using computational fluid dynamics, Phys. Fluids 33 (12) (2021).
[43]
Y. Shi, M. Zhu, Y. Chang, H. Qiao, Y. Liu, The risk of stanford type-A aortic dissection with different tear size and location: a numerical study, Biomed. Eng. Online 15 (2) (2016) 531–544.
[44]
J.R. Cebral, M. Sheridan, C.M. Putman, Hemodynamics and bleb formation in intracranial aneurysms, Am. J. Neuroradiol. 31 (2) (2010) 304–310.

Cited By

View all
  • (2024)Mechanical behaviors of a new elliptical valve stent in bicuspid aortic valveComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2024.108173250:COnline publication date: 1-Jun-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computer Methods and Programs in Biomedicine
Computer Methods and Programs in Biomedicine  Volume 241, Issue C
Nov 2023
368 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 01 November 2023

Author Tags

  1. Hemodynamics
  2. Parallel stent graft
  3. Computational fluid dynamics
  4. Postoperative complication

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Mechanical behaviors of a new elliptical valve stent in bicuspid aortic valveComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2024.108173250:COnline publication date: 1-Jun-2024

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media