[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
review-article

All you need is data preparation: : A systematic review of image harmonization techniques in Multi-center/device studies for medical support systems

Published: 01 June 2024 Publication History

Highlights

Summary of image harmonization techniques in multi-centric healthcare data analysis.
Evaluation of commonly used data harmonization strategies across modalities.
Several imge modalities covered including radiology, pathology, and fluorescence.
Most adopted approaches are grayscale/color normalization and resampling.
Harmonization ensures consistency and improves reliability of pooled data analysis.

Abstract

Background and Objectives

Artificial intelligence (AI) models trained on multi-centric and multi-device studies can provide more robust insights and research findings compared to single-center studies. However, variability in acquisition protocols and equipment can introduce inconsistencies that hamper the effective pooling of multi-source datasets. This systematic review evaluates strategies for image harmonization, which standardizes appearances to enable reliable AI analysis of multi-source medical imaging.

Methods

A literature search using PRISMA guidelines was conducted to identify relevant papers published between 2013 and 2023 analyzing multi-centric and multi-device medical imaging studies that utilized image harmonization approaches.

Results

Common image harmonization techniques included grayscale normalization (improving classification accuracy by up to 24.42 %), resampling (increasing the percentage of robust radiomics features from 59.5 % to 89.25 %), and color normalization (enhancing AUC by up to 0.25 in external test sets). Initially, mathematical and statistical methods dominated, but machine and deep learning adoption has risen recently. Color imaging modalities like digital pathology and dermatology have remained prominent application areas, though harmonization efforts have expanded to diverse fields including radiology, nuclear medicine, and ultrasound imaging. In all the modalities covered by this review, image harmonization improved AI performance, with increasing of up to 24.42 % in classification accuracy and 47 % in segmentation Dice scores.

Conclusions

Continued progress in image harmonization represents a promising strategy for advancing healthcare by enabling large-scale, reliable analysis of integrated multi-source datasets using AI. Standardizing imaging data across clinical settings can help realize personalized, evidence-based care supported by data-driven technologies while mitigating biases associated with specific populations or acquisition protocols.

References

[1]
A. Visvizi, O. Troisi, M. Grimaldi, Big data and decision-making: how big data is relevant across fields and domains, Big Data Decisi.-Mak.: Appl. Uses Public Private Sect. (2023) 1–11,. Jan.
[2]
G. Litjens, et al., A survey on deep learning in medical image analysis, Med. Image Anal. 42 (2017) 60–88,. Elsevier B.V.Dec. 01.
[3]
M. Salvi, et al., Histopathological classification of canine cutaneous round cell tumors using deep learning: a multi-center study, Front. Vet. Sci. 8 (2021),. Mar.
[4]
J. Yao, et al., A multi-center milestone study of clinical vertebral CT segmentation, Comput. Med. Imag. Graph. 49 (2016) 16–28,. Apr.
[5]
N. Michielli, et al., Stain normalization in digital pathology: clinical multi-center evaluation of image quality, J. Pathol. Inform. 13 (2022),. Jan.
[6]
Z. Liu, F. Wu, Y. Wang, M. Yang, X. Pan, FedCL: federated contrastive learning for multi-center medical image classification, Pattern. Recognit. 143 (2023),. Nov.
[7]
J. Xu, et al., Deep reconstruction-recoding network for unsupervised domain adaptation and multi-center generalization in colonoscopy polyp detection, Comput. Method. Program. Biomed. 214 (2022),. Feb.
[8]
K.D. Kim, et al., Enhancing deep learning based classifiers with inpainting anatomical side markers (L/R markers) for multi-center trials, Comput. Method. Program. Biomed. 220 (2022),. Jun.
[9]
M. Salvi, U.R. Acharya, F. Molinari, K.M. Meiburger, The impact of pre- and post-image processing techniques on deep learning frameworks: a comprehensive review for digital pathology image analysis, Comput. Biol. Med. 128 (2021),. Elsevier LtdJan. 01.
[10]
S.A. Mali, et al., Making radiomics more reproducible across scanner and imaging protocol variations: a review of harmonization methods, J. Pers. Med. 11 (9) (2021),. MDPISep. 01.
[11]
L.G. Nyú, J.K. Udupa, On standardizing the MR image intensity scale, Magn. Reson. Med. 42 (6) (1999) 1072–1081,.
[12]
P. Vasuki J. Kanimozhi M. Balkis Devi KLNCIT, S. Klncit, S. Tamilnadu, and I. Tamilnadu, “A survey on image preprocessing techniques for diverse fields of medical imagery”.
[13]
A. Makandar, B. Halalli, and R. Scholar, “A review on preprocessing techniques for digital mammography images,” 2015.
[14]
T.A. Azevedo Tosta, P.R. de Faria, L.A. Neves, M.Z. do Nascimento, Computational normalization of H&E-stained histological images: progress, challenges and future potential, Artif. Intell. Med. 95 (2019) 118–132,. Elsevier B.V.Apr. 01.
[15]
M.S. Pinto, et al., Harmonization of brain diffusion MRI: concepts and methods, Front Neurosci 14 (2020),. Frontiers Media S.A.May 06.
[16]
L. Saba, et al., The present and future of deep learning in radiology, Eur. J. Radiol. 114 (2019) 14–24,. May.
[17]
K.G. van Leeuwen, M. de Rooij, S. Schalekamp, B. van Ginneken, M.J.C.M. Rutten, How does artificial intelligence in radiology improve efficiency and health outcomes?, Pediatr. Radiol. 52 (11) (2022) 2087–2093,. Oct.
[18]
R. Seifert, M. Weber, E. Kocakavuk, C. Rischpler, D. Kersting, Artificial intelligence and machine learning in nuclear medicine: future perspectives, Semin. Nucl. Med. 51 (2) (2021) 170–177,. Mar.
[19]
C. Bruce, et al., Transforming diagnostics: the implementation of digital pathology in clinical laboratories, Histopathology (2024),.
[20]
K.A. Heger, S.M. Waldstein, Artificial intelligence in retinal imaging: current status and future prospects, Expert. Rev. Med. Devices 21 (1–2) (2024) 73–89,. Feb.
[21]
J.F. Zhang, et al., The application of optical coherence tomography angiography in cerebral small vessel disease, ischemic stroke, and dementia: a systematic review, Front. Neurol. 11 (2020),. Sep.
[22]
P.D. Barua, et al., Multilevel deep feature generation framework for automated detection of retinal abnormalities using OCT images, Entropy 23 (12) (2021) 1651,. 2021, Vol. 23, Page 1651Dec.
[23]
S. Arslan, et al., Attention TurkerNeXt: investigations into bipolar disorder detection using OCT images, Diagnostics 13 (22) (2023),. Nov.
[24]
K.M. Meiburger, M. Salvi, G. Rotunno, W. Drexler, M. Liu, Automatic segmentation and classification methods using optical coherence tomography angiography (Octa): a review and handbook, Appl. Sci. (Switzerland) 11 (20) (2021),. MDPIOct. 01.
[25]
Y.T. Shen, L. Chen, W.W. Yue, H.X. Xu, Artificial intelligence in ultrasound, Eur. J. Radiol. 139 (2021),. Jun.
[26]
E. Kaplan, et al., PFP-LHCINCA: pyramidal fixed-size patch-based feature extraction and Chi-square iterative neighborhood component analysis for automated fetal sex classification on ultrasound images, Hindawi Contrast Media Mol. Imag. 2022 (2022),.
[27]
E. Kaplan, et al., Automated BI-RADS classification of lesions using pyramid triple deep feature generator technique on breast ultrasound images, Med. Eng. Phys. 108 (2022) 1350–4533,.
[28]
K. Liopyris, S. Gregoriou, J. Dias, A.J. Stratigos, Artificial intelligence in dermatology: challenges and perspectives, Dermatol. Ther. (Heidelb) 12 (12) (2022) 2637–2651,. Dec.
[29]
V.V. Pai, R.B. Pai, V.V. Pai, R.B. Pai, Artificial intelligence in dermatology and healthcare: an overview, Indian J. Dermatol. Venereol. Leprol. 87 (4) (2021) 457–467,. Jun.
[30]
A. Carré, et al., Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics, Sci. Rep. 10 (1) (2020),. Dec.
[31]
X. Ji, et al., Bi-parametric magnetic resonance imaging based radiomics for the identification of benign and malignant prostate lesions: cross-vendor validation, Phys. Eng. Sci. Med. 44 (3) (2021) 745–754,. Sep.
[32]
M. Alnowami, E. Taha, S. Alsebaeai, S.Muhammad Anwar, A. Alhawsawi, MR image normalization dilemma and the accuracy of brain tumor classification model, J. Radiat. Res. Appl. Sci. 15 (3) (2022) 33–39,. Sep.
[33]
M. Foltyn-Dumitru, et al., Impact of signal intensity normalization of MRI on the generalizability of radiomic-based prediction of molecular glioma subtypes, Eur. Radiol. (2023),.
[34]
X. Sun, et al., Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions, Biomed. Eng. Online 14 (1) (2015),. Jul.
[35]
S. Pereira, A. Pinto, V. Alves, C.A. Silva, Brain tumor segmentation using convolutional neural networks in MRI images, IEEe Trans. Med. ImAging 35 (5) (2016) 1240–1251,. May.
[36]
Y. Ou, et al., Field of view normalization in multi-site brain MRI, Neuroinformatics 16 (3–4) (2018) 431–444,. Oct.
[37]
N. Jacobsen, A. Deistung, D. Timmann, S.L. Goericke, J.R. Reichenbach, D. Güllmar, Analysis of intensity normalization for optimal segmentation performance of a fully convolutional neural network, Z. Med. Phys. 29 (2) (2019) 128–138,. May.
[38]
G. Modanwal, A. Vellal, M.A. Mazurowski, Normalization of breast MRIs using cycle-consistent generative adversarial networks, Comput. Methods Programs Biomed. 208 (2021),. Sep.
[39]
P.L. Delisle, B. Anctil-Robitaille, C. Desrosiers, H. Lombaert, Realistic image normalization for multi-domain segmentation, Med. Image Anal. 74 (2021),. Dec.
[40]
A. Koble, et al., Identifying the most suitable histogram normalization technique for machine learning based segmentation of multispectral brain MRI data, in: IEEE AFRICON Conference, Institute of Electrical and Electronics Engineers Inc., 2021,. Sep.
[41]
S. Albert, et al., Comparison of image normalization methods for multi-site deep learning, Appl. Sci. (Switzerland) 13 (15) (2023),. Aug.
[42]
B. Reiche, A.R. Moody, A. Khademi, Pathology-preserving intensity standardization framework for multi-institutional FLAIR MRI datasets, Magn. Reson. ImAging 62 (2019) 59–69,. Oct.
[43]
A. Ghazvanchahi, P.J. Maralani, A.R. Moody, and A. Khademi, “Effect of intensity standardization on deep learning for WML segmentation in Multi-centre FLAIR MRI,” Jul. 2023, [Online]. Available: http://arxiv.org/abs/2307.03827.
[44]
Y. Li, et al., Normalization of multicenter CT radiomics by a generative adversarial network method, Phys. Med. Biol. 66 (5) (2021),. Mar.
[45]
M. Ligero, et al., Minimizing acquisition-related radiomics variability by image resampling and batch effect correction to allow for large-scale data analysis, Eur. Radiol. 31 (3) (2021) 1460–1470,. Mar.
[46]
W.E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostatistics. 8 (1) (2007) 118–127,. Jan.
[47]
D. Park, et al., Importance of CT image normalization in radiomics analysis: prediction of 3-year recurrence-free survival in non-small cell lung cancer, Eur. Radiol. 32 (12) (2022) 8716–8725,. Dec.
[48]
M. Tonneau, et al., Generalization optimizing machine learning to improve CT scan radiomics and assess immune checkpoint inhibitors’ response in non-small cell lung cancer: a multicenter cohort study, Front. Oncol. 13 (2023),.
[49]
H. Deng, W. Deng, X. Sun, M. Liu, C. Ye, X. Zhou, Mammogram enhancement using intuitionistic fuzzy sets, IEEE Trans. Biomed. Eng. 64 (8) (2017) 1803–1814,. Aug.
[50]
F.J. Pérez-Benito, et al., A deep learning system to obtain the optimal parameters for a threshold-based breast and dense tissue segmentation, Comput. Methods Programs Biomed. 195 (2020),. Oct.
[51]
H. Cao, S. Pu, W. Tan, J. Tong, Breast mass detection in digital mammography based on anchor-free architecture, Comput. Methods Programs Biomed. 205 (2021),. Jun.
[52]
H. Mechria, K. Hassine, M.S. Gouider, Effect of Denoising on Performance of Deep Convolutional Neural Network For Mammogram Images Classification, in: Procedia Computer Science, Elsevier B.V., 2022, pp. 2345–2352,.
[53]
A.C. Perre, L. Alexandre, L. Freire, The Influence of Image Normalization in Mammographic Classification with CNNs, in: 23rd Portuguese Conference on Pattern Recognition, RECPAD 2017, 2017, Accessed: Jan. 24, 2024. [Online]. Available: https://ubibliorum.ubi.pt/handle/10400.6/8237.
[54]
H. Kang, et al., StainNet: a fast and robust stain normalization network, Front. Med. (Lausanne) 8 (2021),. Nov.
[55]
B. Fischl, FreeSurfer, Neuroimage 62 (2) (2012) 774–781,. Aug. 15.
[56]
F. Thiele, S. Young, R. Buchert, F. Wenzel, Voxel-based classification of FDG PET in dementia using inter-scanner normalization, Neuroimage 77 (2013) 62–69,. Aug.
[57]
S.Y. Lee, H. Kang, J.H. Jeong, D.Y. Kang, Performance evaluation in [18F]Florbetaben brain PET images classification using 3D Convolutional Neural Network, PLoS ONE 16 (10 October 2021) (2021),. Oct.
[58]
J. Ren, B.N. Huynh, A.R. Groendahl, O. Tomic, C.M. Futsaether, S.S. Korreman, PET normalizations to improve deep learning auto-segmentation of head and neck tumors in 3D PET/CT, in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Science and Business Media Deutschland GmbH, 2022, pp. 83–91,.
[59]
M. Salvi, et al., Impact of stain normalization on pathologist assessment of prostate cancer: a comparative study, Cancers. (Basel) 15 (5) (2023),. Mar.
[60]
Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley, “Color Transfer between Images”.
[61]
Marc Macenko, et al., A Method for Normalizing Histology Slides for Quantitative Analysis, IEEE, 2009.
[62]
A. Tam, J. Barker, D. Rubin, A method for normalizing pathology images to improve feature extraction for quantitative pathology, Med. Phys. 43 (1) (2016) 528–537,. Jan.
[63]
A. Anghel, et al., A high-performance system for robust stain normalization of whole-slide images in histopathology, Front. Med. (Lausanne) 6 (2019),. Sep.
[64]
M. Salvi, N. Michielli, F. Molinari, Stain Color Adaptive Normalization (SCAN) algorithm: separation and standardization of histological stains in digital pathology, Comput. Methods Programs Biomed. 193 (2020),. Sep.
[65]
T. Mahmood, et al., Accurate segmentation of nuclear regions with multi-organ histopathology images using artificial intelligence for cancer diagnosis in personalized medicine, J. Pers. Med. 11 (6) (2021),. Jun.
[66]
N. Alsubaie, N. Trahearn, S.E.A. Raza, D. Snead, N.M. Rajpoot, Stain deconvolution using statistical analysis of multi-resolution stain colour representation, PLoS ONE 12 (1) (2017),. Jan.
[67]
Y. Zheng, Z. Jiang, H. Zhang, F. Xie, J. Shi, C. Xue, Adaptive color deconvolution for histological WSI normalization, Comput. Methods Programs Biomed. 170 (2019) 107–120,. Mar.
[68]
O. Martos, et al., Optimized detection and segmentation of nuclei in gastric cancer images using stain normalization and blurred artifact removal, Pathol. Res. Pract. 248 (2023),. Aug.
[69]
X. Wang, et al., A generalizable and robust deep learning algorithm for mitosis detection in multicenter breast histopathological images, Med. Image Anal. 84 (2023),. Feb.
[70]
A.M. Alhassan, Driving training-based optimization-multitask fuzzy C-means (DTBO-MFCM) image segmentation and robust deep learning algorithm for multicenter breast histopathological images, IEEe Access. 11 (2023) 136350–136360,.
[71]
R. Bazargani, et al., A novel H and E color augmentation for domain invariance classification of unannotated histopathology prostate cancer images, in: SPIE-Intl Soc Optical Eng, 2023, p. 35,. Apr.
[72]
M. Gavrilovic, et al., Blind color decomposition of histological images, IEEe Trans. Med. Imaging 32 (6) (2013) 983–994,.
[73]
J.C. Gutiérrez Pérez, D. Otero Baguer, P. Maass, StainCUT: stain normalization with contrastive learning, J. ImAging 8 (7) (2022),. Jul.
[74]
B.E. Bejnordi, et al., Stain specific standardization of whole-slide histopathological images, IEEe Trans. Med. ImAging 35 (2) (2016) 404–415,. Feb.
[75]
A.M. Khan, N. Rajpoot, D. Treanor, D. Magee, A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution, IEEE Trans. Biomed. Eng. 61 (6) (2014) 1729–1738,.
[76]
S. Shafiei, A. Safarpoor, A. Jamalizadeh, H.R. Tizhoosh, Class-agnostic weighted normalization of staining in histopathology images using a spatially constrained mixture model, IEEe Trans. Med. ImAging 39 (11) (2020) 3355–3366,. Nov.
[77]
Farhad Ghazvinian Zanjani, Svitlana Zinger, Babak Ehteshami Bejnordi, Jeroen AWM van der Laak, Pter H.N. de With, Stain normalization of histopathology images using generative adversarial networks, IEEE, 2018.
[78]
A. Janowczyk, A. Basavanhally, A. Madabhushi, Stain Normalization using Sparse AutoEncoders (StaNoSA): application to digital pathology, Comput. Med. Imag. Graphic. 57 (2017) 50–61,. Apr.
[79]
Z. Swiderska-Chadaj, et al., Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer, Sci. Rep. 10 (1) (2020),. Dec.
[80]
N.O. Marini, M. Atzori, S. Otálora, S. Marchand-Maillet, and H. Müller, “H&E-adversarial network: a convolutional neural network to learn stain-invariant features through Hematoxylin & Eosin regression”.
[81]
D. Tellez, et al., Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology, Med. Image Anal. 58 (2019),. Dec.
[82]
M. Sun, W. Zou, Z. Wang, S. Wang, Z. Sun, An automated framework for histopathological nucleus segmentation with deep attention integrated networks, IEEE/ACM. Trans. Comput. Biol. Bioinform. (2022),.
[83]
J. Jeong, K.D. Kim, Y. Nam, C.E. Cho, H. Go, N. Kim, Stain normalization using score-based diffusion model through stain separation and overlapped moving window patch strategies, Comput. Biol. Med. 152 (2023),. Jan.
[84]
A. BenTaieb, G. Hamarneh, Adversarial stain transfer for histopathology image analysis, IEEe Trans. Med. ImAging 37 (3) (2018) 792–802,. Mar.
[85]
A. Shrivastava et al., “Self-attentive adversarial stain normalization,” Sep. 2019, [Online]. Available: http://arxiv.org/abs/1909.01963.
[86]
M.W. Lafarge, J.P.W. Pluim, K.A.J. Eppenhof, M. Veta, Learning domain-invariant representations of histological images, Front. Med. (Lausanne) 6 (2019),. Jul.
[87]
P. Salehi and A. Chalechale, “Pix2Pix-based Stain-to-Stain translation: a solution for robust stain normalization in histopathology images analysis.” [Online]. Available: https://github.com/pegahsalehi/Stain-to-Stain-Translation.
[88]
M.Tarek Shaban, Christoph Baur, Nassir Navab, and Shadi Albarqouni, Staingan: stain style transfer for digital histological images.
[89]
C. Cong, S. Liu, A. Di Ieva, M. Pagnucco, S. Berkovsky, Y. Song, Texture enhanced generative adversarial network for stain normalisation in histopathology images, in: Proceedings - International Symposium on Biomedical Imaging, IEEE Computer Society, 2021, pp. 1949–1952,. Apr.
[90]
C. Cong, S. Liu, A. Di Ieva, M. Pagnucco, S. Berkovsky, Y. Song, Colour adaptive generative networks for stain normalisation of histopathology images, Med. Image Anal. 82 (2022),. Nov.
[91]
J. Boschman, et al., The utility of color normalization for AI-based diagnosis of hematoxylin and eosin-stained pathology images, J. Pathol. 256 (1) (2022) 15–24,. Jan.
[92]
N. Altini, et al., The role of unpaired image-to-image translation for stain color normalization in colorectal cancer histology classification, Comput. Method. Program. Biomed. 234 (2023),. Jun.
[93]
K. Faryna, J. Van Der Laak, and G. Litjens, “Tailoring automated data augmentation to H&E-stained histopathology.” [Online]. Available: https://github.com/DIAGNijmegen/pathology-he-auto-augment.
[94]
K. Faryna, J. Van Der Laak, and G. Litjens, “Automatic data augmentation to improve generalization of deep learning in H&E stained histopathology.” [Online]. Available: https://ssrn.com/abstract=4542792.
[95]
N. Marini, et al., Data-driven color augmentation for H&E stained images in computational pathology, J. Pathol. Inform. 14 (2023),. Jan.
[96]
S. Dammak, M.J. Cecchini, D. Breadner, A.D. Ward, Using deep learning to predict tumor mutational burden from scans of H&E-stained multicenter slides of lung squamous cell carcinoma, J. Med. Imag. 10 (01) (2023),. Feb.
[97]
P. Huang et al., “Assessing and enhancing robustness of deep learning models with corruption emulation in digital pathology,” Oct. 2023, [Online]. Available: http://arxiv.org/abs/2310.20427.
[98]
S. Otálora, M. Atzori, V. Andrearczyk, A. Khan, H. Müller, Staining invariant features for improving generalization of deep convolutional neural networks in computational pathology, Front. Bioeng. Biotechnol. 7 (AUG) (2019),.
[99]
N. Bouteldja, D.L. Hölscher, R.D. Bülow, I.S.D. Roberts, R. Coppo, P. Boor, Tackling stain variability using CycleGAN-based stain augmentation, J. Pathol. Inform. 13 (2022),. Jan.
[100]
Y. Tolkach et al., “Artificial intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarcinomas: a retrospective algorithm development and validation study,” 2023. [Online]. Available: www.thelancet.com/.
[101]
S. Yang, B.U. Lee, Poisson-Gaussian noise reduction using the hidden Markov model in contourlet domain for fluorescence microscopy images, PLoS ONE 10 (9) (2015),. Sep.
[102]
V. Mannam, et al., Real-time image denoising of mixed Poisson–Gaussian noise in fluorescence microscopy images using ImageJ, Optica 9 (4) (2022) 335,. Apr.
[103]
S. Yang, et al., DeepNoise: signal and noise disentanglement based on classifying fluorescent microscopy images via deep learning, Genomics. Proteomics. Bioinformatics. 20 (5) (2022) 989–1001,. Oct.
[104]
Coleman Broaddus, Alexander Krull, Martin Weigert, Uwe Schmidt, and Gene Myers, Removing structured noise with self-supervised blind-spot networks.
[105]
Y. Zhang et al., “A poisson-gaussian denoising dataset with real fluorescence microscopy images,” Dec. 2018, [Online]. Available: http://arxiv.org/abs/1812.10366.
[106]
E. Demircan-Tureyen, F.P. Akbulut, M.E. Kamasak, Restoring fluorescence microscopy images by transfer learning from tailored data, IEEe Access. 10 (2022) 61016–61033,.
[107]
F. Shi, et al., DeSpecNet: a CNN-based method for speckle reduction in retinal optical coherence tomography images, Phys. Med. Biol. 64 (17) (2019),. Sep.
[108]
N. Gour, P. Khanna, Speckle denoising in optical coherence tomography images using residual deep convolutional neural network, Multimed. Tools. Appl. 79 (21–22) (2020) 15679–15695,. Jun.
[109]
D. Romo-Bucheli, et al., Reducing image variability across OCT devices with unsupervised unpaired learning for improved segmentation of retina, Biomed. Opt. Express. 11 (1) (2020) 346,. Jan.
[110]
F.G. Venhuizen, et al., Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography, Biomed. Opt. Express. 9 (4) (2018) 1545,. Apr.
[111]
H. Bogunovic, et al., RETOUCH: the Retinal OCT fluid detection and segmentation benchmark and challenge, IEEe Trans. Med. ImAging 38 (8) (2019) 1858–1874,. Aug.
[112]
Z. Ma, D. Feng, J. Wang, H. Ma, Retinal OCTA image segmentation based on global contrastive learning, Sensors 22 (24) (2022),. Dec.
[113]
C. Liu, M. Qiao, F. Jiang, Y. Guo, Z. Jin, Y. Wang, TN-USMA Net: triple normalization-based gastrointestinal stromal tumors classification on multicenter EUS images with ultrasound-specific pretraining and meta attention, Med. Phys. 48 (11) (2021) 7199–7214,. Nov.
[114]
S. Ren, et al., Preoperative prediction of pathological grading of hepatocellular carcinoma using machine learning-based ultrasomics: a multicenter study, Eur. J. Radiol. 143 (2021),. Oct.
[115]
H. Homayoun, et al., Applications of machine-learning algorithms for prediction of benign and malignant breast lesions using ultrasound radiomics signatures: a multi-center study, Biocybern. Biomed. Eng. 42 (3) (2022) 921–933,. Jul.
[116]
N. Sirjani, et al., A novel deep learning model for breast lesion classification using ultrasound Images: a multicenter data evaluation, Physica Medica 107 (2023),. Mar.
[117]
H. Du, et al., Convolutional networks for the segmentation of intravascular ultrasound images: evaluation on a multicenter dataset, Comput. Methods Programs Biomed. 215 (2022),. Mar.
[118]
N.C.F. Codella, et al., Deep learning ensembles for melanoma recognition in dermoscopy images, IBM. J. Res. Dev. 61 (4) (2017),. Jul.
[119]
R. Azad, M.T. Al-Antary, M. Heidari, D. Merhof, TransNorm: transformer provides a strong spatial normalization mechanism for a deep segmentation model, IEEe Access. 10 (2022) 108205–108215,.
[120]
Z. Yu, et al., Melanoma recognition in dermoscopy images via aggregated deep convolutional features, IEEE Trans. Biomed. Eng. 66 (4) (2019) 1006–1016,. Apr.
[121]
A. Gong, X. Yao, W. Lin, Dermoscopy image classification based on StyleGANs and decision fusion, IEEe Access. 8 (2020) 70640–70650,.
[122]
M.S. Ali, M.S. Miah, J. Haque, M.M. Rahman, M.K. Islam, An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models, Mach. Learn. Appl. 5 (2021),. Sep.
[123]
C. Xin, et al., An improved transformer network for skin cancer classification, Comput. Biol. Med. 149 (2022),. Oct.
[124]
H.K. Gajera, D.R. Nayak, M.A. Zaveri, A comprehensive analysis of dermoscopy images for melanoma detection via deep CNN features, Biomed. Signal. Process. Control 79 (2023),. Jan.
[125]
K. Zafar, et al., Skin lesion segmentation from dermoscopic images using convolutional neural network, Sensors (Switzerland) 20 (6) (2020),. Mar.
[126]
K. Behara, E. Bhero, J.T. Agee, Skin lesion synthesis and classification using an improved DCGAN classifier, Diagnostics 13 (16) (2023),. Aug.
[127]
C. Barata, J.S. Marques, M.E. Celebi, Improving dermoscopy image analysis using color constancy, in: 2014 IEEE International Conference on Image Processing, ICIP 2014, 19, 2014, pp. 3527–3531,.
[128]
C. Barata, M.E. Celebi, J.S. Marques, Improving dermoscopy image classification using color constancy, IEEe J. Biomed. Health Inform. 19 (3) (2015) 1146–1152,. May.
[129]
Q. Abbas, I.F. Garcia, M.Emre Celebi, W. Ahmad, Q. Mushtaq, A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images, Skin Res. Technol. 19 (1) (2013),. Feb.
[130]
B. Hewitt, M.H. Yap, J. Ng, M. Goyal, The effect of color constancy algorithms on semantic segmentation of skin lesions, in: SPIE-Intl Soc Optical Eng, 2019, p. 25,. Mar.
[131]
Olga Cherepkova, Jon Yngve Hardeberg, Enhancing Dermoscopy Images to Improve Melanoma Detection, IEEE, 2018.
[132]
J. Zhang, Y. Xie, Y. Xia, C. Shen, Attention residual learning for skin lesion classification, IEEe Trans. Med. ImAging 38 (9) (2019) 2092–2103,. Sep.
[133]
J. van de Weijer, T. Gevers, A. Gijsenij, Edge-based color constancy, IEEE Trans. Image Process. 16 (9) (2007) 2207–2214,. Sep.
[134]
Y. Yuan, Y.C. Lo, Improving Dermoscopic image segmentation with enhanced convolutional-deconvolutional networks, IEEe J. Biomed. Health Inform. 23 (2) (2019) 519–526,. Mar.
[135]
M. Goyal, A. Oakley, P. Bansal, D. Dancey, M.H. Yap, Skin lesion segmentation in Dermoscopic images with ensemble deep learning methods, IEEe Access. 8 (2020) 4171–4181,.
[136]
G.D. Finlayson and E. Trezzi, “Shades of gray and Colour constancy”.
[137]
M. Salvi, et al., DermoCC-GAN: a new approach for standardizing dermatological images using generative adversarial networks, Comput. Methods Programs Biomed. 225 (2022),. Oct.
[138]
A. Galdran et al., “Data-driven color augmentation techniques for deep skin image analysis,” Mar. 2017, [Online]. Available: http://arxiv.org/abs/1703.03702.
[139]
F. Veronese, et al., The role in Teledermoscopy of an inexpensive and Easy-to-Use smartphone device for the classification of three types of skin lesions using convolutional neural networks, Diagnostics 11 (3) (2021) 451,. 2021, Vol. 11, Page 451Mar.
[140]
F. Branciforti, et al., Impact of artificial intelligence-based color constancy on dermoscopical assessment of skin lesions: a comparative study, Skin Res. Technol. 29 (11) (2023),. Nov.
[141]
M. Salvi, F. Branciforti, F. Molinari, K.M. Meiburger, Generative models for color normalization in digital pathology and dermatology: advancing the learning paradigm, Expert. Syst. Appl. 245 (2024),. Jul.
[142]
A. Papadopoulos, D.I. Fotiadis, L. Costaridou, Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques, Comput. Biol. Med. 38 (10) (2008) 1045–1055,. Oct.
[143]
S.K. Kang, D. Kim, S.A. Shin, Y.K. Kim, H. Choi, J.S. Lee, Fast and accurate amyloid brain PET quantification without MRI using deep neural networks, J. Nucl. Med. 64 (4) (2023) 659–666,. Apr.
[144]
R.D. Brook, et al., Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the american heart association, Circulation 121 (21) (2010) 2331–2378,. Jun. 01.
[145]
K. Sirinukunwattana, et al., Gland segmentation in colon histology images: the glas challenge contest, Med. Image Anal. 35 (2017) 489–502,. Jan.
[146]
M. Veta, et al., Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge, Med. Image Anal. 54 (2019) 111–121,. May.
[147]
G. Litjens, et al., 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset, Gigascience 7 (6) (2018),. Oxford University PressJun. 01.
[148]
P. Bándi, et al., From detection of individual metastases to classification of lymph node status at the patient level: the CAMELYON17 challenge, IEEe Trans. Med. ImAging 38 (2) (2019) 550–560,. Feb.
[149]
Á.E. Esteban, M. López-Pérez, A. Colomer, M.A. Sales, R. Molina, V. Naranjo, A new optical density granulometry-based descriptor for the classification of prostate histological images using shallow and deep Gaussian processes, Comput. Methods Programs Biomed. 178 (2019) 303–317,. Sep.
[150]
K. Tomczak, P. Czerwińska, M. Wiznerowicz, The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge, Wspolczesna Onkologia 1A (2015) A68–A77,. Termedia Publishing House Ltd.
[151]
F.A. Spanhol, L.S. Oliveira, C. Petitjean, L. Heutte, A dataset for breast cancer histopathological image classification, IEEE Trans. Biomed. Eng. 63 (7) (2016) 1455–1462,. Jul.
[152]
N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, A. Sethi, A dataset and a technique for generalized nuclear segmentation for computational pathology, IEEe Trans. Med. ImAging 36 (7) (2017) 1550–1560,. Jul.
[153]
G. Aresta, et al., BACH: grand challenge on breast cancer histology images, Med. Image Anal. 56 (2019) 122–139,. Aug.
[154]
Y.J. Kim, et al., PAIP 2019: liver cancer segmentation challenge, Med. Image Anal. 67 (2021),. Jan.
[155]
M. Li et al., “OCTA-500: a retinal dataset for optical coherence tomography angiography study”, Accessed: Jan. 27, 2024. [Online]. Available: https://ieee-dataport.org/open-access/octa-500.
[156]
N. Banić, S. Lončarić, Smart light random memory sprays Retinex: a fast Retinex implementation for high-quality brightness adjustment and color correction, J. Opt. Soc. Am. A 32 (11) (2015) 2136,. Nov.
[157]
Y. Peng, N. Wang, Y. Wang, M. Wang, Segmentation of dermoscopy image using adversarial networks, Multimed. Tools. Appl. 78 (8) (2019) 10965–10981,. Apr.
[158]
R.J. Chen, et al., Algorithmic fairness in artificial intelligence for medicine and healthcare, Nat. Biomed. Eng. 7 (6) (2023) 719–742,. 2023 7:6Jun.
[159]
M. Salvi, et al., Multi-modality approaches for medical support systems: a systematic review of the last decade, Inf. Fusion 103 (2024),. Mar.
[160]
R.S. Antunes, C.A. Da Costa, A. Küderle, I.A. Yari, B. Eskofier, Federated learning for healthcare: systematic review and architecture proposal, ACM. Trans. Intell. Syst. Technol. 13 (4) (2022),. May.
[161]
A.B.E. Attia, et al., A review of clinical photoacoustic imaging: current and future trends, Photoacoustics 16 (2019),. Elsevier GmbHDec. 01.
[162]
F. Pérez-Bueno, et al., Blind color deconvolution, normalization, and classification of histological images using general super Gaussian priors and Bayesian inference, Comput. Methods Programs Biomed. 211 (2021),. Nov.

Cited By

View all
  • (2024)Challenges and limitations in applying radiomics to PET imagingComputers in Biology and Medicine10.1016/j.compbiomed.2024.108827179:COnline publication date: 18-Oct-2024
  • (2024)Assessing the impact of ultrasound image standardization in deep learning-based segmentation of carotid plaque typesComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2024.108460257:COnline publication date: 1-Dec-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computer Methods and Programs in Biomedicine
Computer Methods and Programs in Biomedicine  Volume 250, Issue C
Jun 2024
412 pages

Publisher

Elsevier North-Holland, Inc.

United States

Publication History

Published: 01 June 2024

Author Tags

  1. Multi-center studies
  2. Multi-device studies
  3. Image harmonization
  4. Data preparation
  5. Medical imaging
  6. Artificial intelligence
  7. Systematic review

Qualifiers

  • Review-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Challenges and limitations in applying radiomics to PET imagingComputers in Biology and Medicine10.1016/j.compbiomed.2024.108827179:COnline publication date: 18-Oct-2024
  • (2024)Assessing the impact of ultrasound image standardization in deep learning-based segmentation of carotid plaque typesComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2024.108460257:COnline publication date: 1-Dec-2024

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media