Human-airway surface mesh smoothing based on graph convolutional neural networks
References
[1]
S. Choi, E.A. Hoffman, S.E. Wenzel, M. Castro, S.B. Fain, N.N. Jarjour, M.L. Schiebler, K. Chen, C.L. Lin, Quantitative assessment of multiscale structural and functional alterations in asthmatic populations, J. Appl. Physiol. 1985 (118) (2015) 1286–1298,.
[2]
Y. Yin, J. Choi, E.A. Hoffman, M.H. Tawhai, C.L. Lin, Simulation of pulmonary air flow with a subject-specific boundary condition, J. Biomech. 43 (2010) 2159–2163,.
[3]
S. Miyawaki, M.H. Tawhai, E.A. Hoffman, S.E. Wenzel, C.L. Lin, Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface, Biomech. Model. Mechanobiol. 16 (2017) 583–596,.
[4]
C.L. Lin, M.H. Tawhai, G. McLennan, E.A. Hoffman, Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways, Respir. Physiol. Neurobiol. 157 (2007) 295–309,.
[5]
S. Miyawaki, M.H. Tawhai, E.A. Hoffman, C.L. Lin, Effect of carrier gas properties on aerosol distribution in a CT-based human airway numerical model, Ann. Biomed. Eng. 40 (2012) 1495–1507,.
[6]
D. Wu, M.H. Tawhai, E.A. Hoffman, C.L. Lin, A numerical study of heat and water vapor transfer in MDCT-based human airway models, Ann. Biomed. Eng. 42 (2014) 2117–2131,.
[7]
T. Gemci, V. Ponyavin, Y. Chen, H. Chen, R. Collins, Computational model of airflow in upper 17 generations of human respiratory tract, J. Biomech. 41 (2008) 2047–2054,.
[8]
C. Kleinstreuer, Z. Zhang, Z. Li, Modeling airflow and particle transport/deposition in pulmonary airways, Respir. Physiol. Neurobiol. 163 (2008) 128–138,.
[9]
N. Nowak, P.P. Kakade, A.V. Annapragada, Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs, Ann. Biomed. Eng. 31 (2003) 374–390,.
[10]
T.M. Tran, S. Huh, S. Kim, X. Cui, S. Choi, Numerical investigation of the effect of tracheostomy on flow and particle transport characteristics in human airways, Phys. Fluids 34 (2022),.
[11]
S. Choi, S. Miyawaki, C.L. Lin, A feasible computational fluid dynamics study for relationships of structural and functional alterations with particle depositions in severe asthmatic lungs, Comput. Math. Methods Med. 2018 (2018),.
[12]
I. Volkau, W. Zheng, R. Baimouratov, A. Aziz, W.L. Nowinski, Geometric modeling of the human normal cerebral arterial system, IEEE Trans. Med. ImAging 24 (2005) 529–539,.
[13]
H.K. Hahn, B. Preim, D. Selle, H.-O. Peitgen, Visualization and interaction techniques for the exploration of vascular structures, in: Proceedings Visualization, 2001. VIS ’01., 2001: 395–578, doi:10.1109/VISUAL.2001.964538.
[14]
M.H. Tawhai, E.A. Hoffman, C.L. Lin, The lung physiome: merging imaging-based measures with predictive computational models, Wiley Interdiscip. Rev. Syst. Biol. Med. 1 (2009) 61–72,.
[15]
S. Miyawaki, S. Choi, E.A. Hoffman, C.L. Lin, A 4DCT imaging-based breathing lung model with relative hysteresis, J. Comput. Phys. 326 (2016) 76–90,.
[16]
P.K. Rajaraman, J. Choi, E.A. Hoffman, P.T. O'Shaughnessy, S. Choi, R. Delvadia, A. Babiskin, R. Walenga, C.L. Lin, Transport and deposition of hygroscopic particles in asthmatic subjects with and without airway narrowing, J. Aerosol. Sci. 146 (2020),.
[17]
T.R. Jones, F. Durand, M. Desbrun, Non-iterative, feature-preserving mesh smoothing, ACM Trans. Graph. 22 (2003) 943–949,.
[18]
T. Li, J. Wang, H. Liu, L. Liu, Efficient mesh denoising via robust normal filtering and alternate vertex updating, Front. Inf. Technol. Electron. Eng. 18 (2018) 1828–1842,.
[19]
G. Taubin, Curve and surface smoothing without shrinkage, Proceedings of IEEE International Conference on Computer Vision, 1995, pp. 852–857. https://doi.org/10.1109/ICCV.1995.466848.
[20]
H. Yagou, Y. Ohtake, A. Belyaev, Mesh smoothing via mean and median filtering applied to face normals, in: Geometric Modeling and Processing. Theory and Applications. GMP 2002, Proceedings (2002) 124–131,.
[21]
W. Zhao, X. Liu, S. Wang, X. Fan, D. Zhao, Graph-based feature-preserving mesh normal filtering, IEEe Trans. Vis. Comput. Graph. 27 (2021) 1937–1952,.
[22]
W. Zhang, B. Deng, J. Zhang, S. Bouaziz, L. Liu, Guided mesh normal filtering, Comput. Graph. Forum 34 (2015) 23–34,.
[23]
Y. Zheng, H. Fu, O.K. Au, C.L. Tai, Bilateral normal filtering for mesh denoising, IEEE Trans. Vis. Comput. Graph. 17 (2011) 1521–1530,.
[24]
G. Arvanitis, A.S. Lalos, K. Moustakas, N. Fakotakis, Feature preserving mesh denoising based on graph spectral processing, IEEe Trans. Vis. Comput. Graph. 25 (2019) 1513–1527,.
[25]
X. Lu, Z. Deng, W. Chen, A robust scheme for feature-preserving mesh denoising, IEEE Trans. Vis. Comput. Graph. 22 (2016) 1181–1194,.
[26]
M. Wei, L. Liang, W.M. Pang, J. Wang, W. Li, H. Wu, Tensor voting guided mesh denoising, IEEE Trans. Autom. Sci. Eng. 14 (2017) 931–945,.
[27]
R. Wang, Z. Yang, L. Liu, J. Deng, F. Chen, Decoupling noise and features via weighted ℓ1-analysis compressed sensing, ACM Trans. Graph. 33 (2014) 1–12,.
[28]
Y. Zhao, H. Qin, X. Zeng, J. Xu, J. Dong, Robust and effective mesh denoising using L0 sparse regularization, Comput. Aided Des. 101 (2018) 82–97,.
[29]
L. He, S. Schaefer, Mesh denoising via L0 minimization, ACM Trans. Graph. 32 (2013) 1–8,.
[30]
P.S. Wang, Y. Liu, X. Tong, Mesh denoising via cascaded normal regression, ACM Trans. Graph. 35 (2016) 1–12,.
[31]
W. Zhao, X. Liu, Y. Zhao, X. Fan, D. Zhao, NormalNet: learning-based mesh normal denoising via local partition normalization, IEEE Trans. Circuits Syst. Video Technol. 31 (2021) 4697–4710,.
[32]
X. Li, R. Li, L. Zhu, C.W. Fu, P.A. Heng, DNF-Net: a deep normal filtering network for mesh denoising, IEEe Trans. Vis. Comput. Graph. 27 (2021) 4060–4072,.
[33]
Y. Shen, H. Fu, Z. Du, X. Chen, E. Burnaev, D. Zorin, K. Zhou, Y. Zheng, GCN-denoiser: mesh denoising with graph convolutional networks, ACM Trans. Graph 41 (2022) 1–14,.
[34]
Y. Zhang, G. Shen, Q. Wang, Y. Qian, M. Wei, J. Qin, GeoBi-GNN: geometry-aware Bi-domain mesh denoising via graph neural networks, Comput. Aided Des. 144 (2022),.
[35]
J. Wang, J. Huang, F.L. Wang, M. Wei, H. Xie, J. Qin, Data-driven geometry-recovering mesh denoising, Comput. Aided Des 114 (2019) 133–142,.
[36]
Z. Li, Y. Zhang, Y. Feng, X. Xie, Q. Wang, M. Wei, P.A. Heng, NormalF-Net: normal Filtering Neural Network for Feature-preserving Mesh Denoising, Comput. Aided Des 127 (2020),.
[37]
X. Sun, P. Rosin, R. Martin, F. Langbein, Fast and effective feature-preserving mesh denoising, IEEe Trans. Vis. Comput. Graph. 13 (2007) 925–938,.
[38]
D. Ulyanov, A. Vedaldi, V. Lempitsky, Deep Image Prior, Int J Comput Vis 128 (2020) 1867–1888,.
[39]
S. Hattori, T. Yatagawa, Y. Ohtake, H. Suzuki, Learning Self-prior for Mesh Denoising Using Dual Graph Convolutional Networks, in: S. Avidan, G. Brostow, M. Cissé, G.M. Farinella, T. Hassner (Eds.), Computer Vision – ECCV, 2022, pp. 363–379. https://doi.org/10.1007/978-3-031-20062-5_21.
[40]
R. Hanocka, G. Metzer, R. Giryes, D. Cohen-Or, Point2Mesh, ACM Trans. Graph. (2020) 39,.
[41]
H. Shota, Y. Tatsuya, O. Yutaka, S. Hiromasa, Deep Mesh Prior: Unsupervised Mesh Restoration using Graph Convolutional Networks. arXiv preprint arXiv:2107.02909.
[42]
M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, Proceedings of the 30th International Conference on Neural Information Processing Systems, Associates Inc., Red Hook, NY, USA, 2016, pp. 3844–3852.
[43]
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
[44]
C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), 1998, pp. 839–846,.
[45]
K.-W. Lee, W.-P. Wang, Feature-preserving mesh denoising via bilateral normal filtering, Ninth International Conference on Computer Aided Design and Computer Graphics (CAD-CG’05), 2005, pp. 6–pp. https://doi.org/10.1109/CAD-CG.2005.40.
[46]
Y. Ohtake, A. Belyaev, I. Bogaevski, Mesh regularization and adaptive smoothing, Comput. Aided Des. 33 (2001) 789–800,.
[47]
H.B. Cho, K.J. Chae, G.Y. Jin, J. Choi, C.L. Lin, E.A. Hoffman, S.E. Wenzel, M. Castro, S.B. Fain, N.N. Jarjour, M.L. Schiebler, R.G. Barr, N. Hansel, C.B. Cooper, E.C. Kleerup, M.K. Han, P.G. Woodruff, R.E. Kanner, E.R. Bleecker, S.P. Peters, W.C. Moore, C.H. Lee, S. Choi, L. National Heart, S. Blood Institute's, C.S. InteRmediate outcome measures in, P. Severe asthma research, structural and functional features on quantitative chest computed tomography in the Korean Asian versus the white American healthy non-smokers, Korean J. Radiol. 20 (2019) 1236–1245,.
[48]
T.T. Ho, T. Kim, W.J. Kim, C.H. Lee, K.J. Chae, S.H. Bak, S.O. Kwon, G.Y. Jin, E.K. Park, S. Choi, A 3D-CNN model with CT-based parametric response mapping for classifying COPD subjects, Sci. Rep. 11 (2021) 34,.
[49]
J. Tschirren, E.A. Hoffman, G. McLennan, M. Sonka, Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans, IEEe Trans. Med. Imaging 24 (2005) 1529–1539.
[50]
Y. Yin, J. Choi, E.A. Hoffman, M.H. Tawhai, C.L. Lin, A multiscale MDCT image-based breathing lung model with time-varying regional ventilation, J. Comput. Phys. 244 (2013) 168–192,.
[51]
C. Geuzaine, J.F. Remacle, Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng. 79 (2009) 1309–1331,.
[52]
H. Si, TetGen, a delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Softw. 41 (2015) 1–36,.
[53]
T. Lee, C.L. Lin, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys. 206 (2005) 16–47,.
[54]
A.W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications, Phys. Fluids 16 (2004) 3670–3681,.
[55]
S. Choi, S. Yoon, J. Jeon, C. Zou, J. Choi, M.H. Tawhai, E.A. Hoffman, R. Delvadia, A. Babiskin, R. Walenga, C.L. Lin, 1D network simulations for evaluating regional flow and pressure distributions in healthy and asthmatic human lungs, J. Appl. Physiol. 1985 (127) (2019) 122–133,.
[56]
T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A Next-generation Hyperparameter Optimization Framework, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019) 2623–2631,.
[57]
Z. Liu, Y. Li, W. Wang, L. Liu, R. Chen, Mesh total generalized variation for denoising, IEEE Trans. Vis. Comput. Graph. 28 (2022) 4418–4433,.
[58]
X. Wei, Z. Chen, Y. Fu, Z. Cui, Y. Zhang, Deep Hybrid Self-Prior for Full 3D Mesh Generation, 2021 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, Montreal, QC, Canada, 2021, pp. 5785–5794. https://doi.org/10.1109/ICCV48922.2021.00575.
Recommendations
Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis
In this study the biomechanical characteristics of a realistic carotid artery [3] are studied numerically using different inlet velocity profiles. Several experimental data measured [32] at the common carotid artery are used as inlet boundary ...
Superficial femoral artery stenting: Impact of stent design and overlapping on the local hemodynamics
Abstract BackgroundSuperficial femoral arteries (SFAs) treated with self-expanding stents are widely affected by in-stent restenosis (ISR), especially in case of long lesions and multiple overlapping devices. The altered ...
Highlights- Virtual stent implantation method based on mesh morphing.
- Hemodynamics ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Elsevier B.V.
Publisher
Elsevier North-Holland, Inc.
United States
Publication History
Published: 25 June 2024
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0
Reflects downloads up to 22 Dec 2024