[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Online anomaly detection for multi-source VMware using a distributed streaming framework

Published: 01 November 2016 Publication History

Abstract

Anomaly detection refers to the identification of patterns in a dataset that do not conform to expected patterns. Such non-conformant patterns typically correspond to samples of interest and are assigned to different labels in different domains, such as outliers, anomalies, exceptions, and malware. A daunting challenge is to detect anomalies in rapid voluminous streams of data.

References

[1]
Solaimani M, Khan L, Thuraisingham B. Real-time anomaly detection over VMware performance data using storm. The 15th IEEE International Conference on Information Reuse and Integration, San Francisco, USA, 2014; pp.458-465.
[2]
Solaimani M, Iftekhar M, Khan L, Thuraisingham B, Ingram JB. Spark-based anomaly detection over multi-source VMware performance data in real-time. In the Proceeding of 2014 IEEE Symposium Series on Computational Intelligence: Orlando, Florida, USA, 2014; pp.66-73.
[3]
Mustafa A, Solaimani M, Khan L, Chiang K, Ingram J. Host-based anomalous behavior detection using cluster-level markov networks. Tenth Annual IFIP WG 11.9 International Conference on Digital Forensics, Vienna University of Technology: Vienna, Austria, 2014.
[4]
Mustafa A, Haque A, Khan L, Baron M, Thuraisingham B. Evolving stream classification using change detection. 10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, October 22-25, 2014, Miami, Florida, USA, 2014; pp.154-162.
[5]
Yao Y, Sharma A, Golubchik L, Govindan R. Online anomaly detection for sensor systems: a simple and efficient approach. Performance Evaluation. 2010; Volume 67 Issue 11: pp.1059-1075.
[6]
Lee W, Stolfo SJ, Chan PK, Eskin E, Fan W, Miller M, Hershkop S, Zhang J. Real time data mining-based intrusion detection. In Darpa Information Survivability Conference & Exposition II, 2001. Discex'01. Proceedings, Vol.¿1, IEEE, Anaheim, CA, USA, 2001; pp.89-100.
[7]
Abuaitah GR. Anomalies in sensor network deployments: analysis, modeling, and detection. Ph.D. dissertation, Wright State University, OH, USA, 2013.
[8]
Hayes MA, Capretz MAM. Contextual anomaly detection in big sensor data. In Big Data BigData Congress, 2014 IEEE International Congress on: IEEE, 2014; pp.64-71.
[9]
Janeja VP, Azari A, Namayanja JM, Heilig B. B-dids: mining anomalies in a big-distributed intrusion detection system. In Big Data Big Data, 2014 IEEE International Conference on, 2014; pp.32-34.
[10]
Savage D, Zhang X, Yu X, Chou P, Wang Q. Anomaly detection in online social networks. Social Networks. 2014; Volume 39 Issue 0: pp.62-70.
[11]
Apache hadoop. Available at: "http://hadoop.apache.org/" {Accessed 15 October 2013}.
[12]
Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Communications of the ACM. 2008; Volume 51 Issue 1: pp.107-113.
[13]
Apache hbase. Available at: "https://hbase.apache.org/" {Accessed 12 October 2015}.
[14]
Apache mahout. Available at: "https://mahout.apache.org/" {Accessed 1 February 2014}.
[15]
Chang F, Dean J, Ghemawat S, Hsieh W. C, Wallach D. A, Burrows M, Chandra T, Fikes A, Gruber R. E. Bigtable: a distributed storage system for structured data. ACM Transactions on Computer Systems TOCS. 2008; Volume 26 Issue 2: pp.4-4.
[16]
Storm - distributed and fault-tolerant realtime computation. Available at: "http://storm.incubator.apache.org/" {Accessed 8 December 2013}.
[17]
S4. Available at: "http://incubator.apache.org/s4" {Accessed June 2013}.
[18]
Apache Spark. Available at: "http://spark.apache.org/" {Accessed 30 May 2014}.
[19]
Apache Spark. Available at: "http://spark.apache.org/streaming/" {Accessed 30 May 2014}.
[20]
Balasingam B, Sankavaram MS, Choi K, Ayala DFM, Sidoti D, Pattipati K, Willett P, Lintz C, Commeau G, Dorigo F, Fahrny J. Online anomaly detection in big data. Information Fusion Fusion, 2014 17th International Conference, Salamanca, Spain, 2014; pp.1-8.
[21]
Camacho J, Macia-Fernandez G, Diaz-Verdejo J, Garcia-Teodoro P. Tackling the big data 4 VS for anomaly detection. Computer Communications Workshops INFOCOM WKSHPS, 2014 IEEE Conference on, Toronto, Canada, 2014; pp.500-505.
[22]
Apache Kafka. Available at: "http://kafka.apache.org/".
[23]
Message broker. Available at: "http://en.wikipedia.org/wiki/Message_{b}roker" {Accessed 7 December 2015}.
[24]
Publish subscribe pattern. Available at: "http://en.wikipedia.org/wiki/Publish-subscribe_{p}attern" {Accessed 18 December 2015}.
[25]
Charikar M, Chekuri C, Feder T, Motwani R. Incremental clustering and dynamic information retrieval. SIAM Journal on Computing. 2004; Volume 33 Issue 6: pp.1417-1440.
[26]
VMware. Automating the virtual datacenter. Available at: "https://www.vmware.com/files/pdf/avd_{w}p.pdf".
[27]
Apache zookeeper TM. Available at: "http://zookeeper.apache.org/doc/r3.3.4/" {Accessed 28 November 2011}.
[28]
Apache hadoop nextgen mapreduce YARN. Available at: "http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html" {Accessed 29 June 2015}.
[29]
Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, Franklin MJ, Shenker S, Stoica I. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. 9th USENIX Conference on Networked Systems Design and Implementation: San Jose, CA, USA, 2012; pp.2-2.
[30]
Zaharia M, Chowdhury M, Das T, Dave A, Ma J, Mccauley M, Franklin M, Shenker S, Stoica I. Fast and interactive analytics over hadoop data with spark. USENIX; ligin 37.4 2012; pp.45-51.
[31]
Zaharia M, Das T, Li H, Shenker S, Stoica I. Discretized streams: an efficient and fault-tolerant model for stream processing on large clusters. 4th USENIX Conference on Hot Topics in Cloud Ccomputing, USENIX Association, Boston, AA, USA, 2012; pp.10-10.
[32]
Why use resource pools ? Available at: "http://pubs.vmware.com/vsphere-4-esx-vcenter/index.jsp?topic=/com.vmware.vsphere.resourcemanagement.doc_{4}0/managing_{r}esource_{p}ools/c_{w}hy_{u}se_{r}esource_{p}ools.html".
[33]
VMware. Using DRS affinity rules. Available at: "http://pubs.vmware.com/vsphere-51/index.jsp".
[34]
Tan Kumar S. Introduction to Data Mining. no. 3, Pearson Education, Limited: NY, USA, 2005.
[35]
VMware. Vsphere ESX and ESXI info center. Available at: "http://www.vmware.com/products/esxi-and-esx/overview".
[36]
Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing: ACM, Indianapolis, IN, USA, 2010; pp.143-154.
[37]
Kaufman L, Rousseeuw PJ. Finding Groups in Data: An Introduction to Cluster Analysis, <bookSeriesTitle>Wiley series in probability and mathematical statistics. Applied probability and statistics</bookSeriesTitle>. Wiley, 2005.
[38]
Assent I, Kranen P, Baldauf C, Seidl T. Anyout: anytime outlier detection on streaming data. In Database Systems for Advanced Applications Springer, 2012; pp.228-242.
[39]
Frey E. Bashreduce, 2009. Available at: "http://rcrowley.org/2009/06/27/bashreduce" {Accessed 27 June 2009}.
[40]
Yu L, Lan Z. A scalable, non-parametric anomaly detection framework for hadoop. In Proceedings of the 2013 ACM Cloud and Autonomic Computing Conference, ACM: Miamy, FL, USA, 2013; pp.22-22.
[41]
Gupta M, Sharma AB, Chen H, Jiang G. Context-aware time series anomaly detection for complex systems. In WORKSHOP NOTES, Austin, TX, USA, 2013; pp.14-14.

Cited By

View all
  • (2023)Implementation and visualization of a netflow log data lake system for cyberattack detection using distributed deep learningThe Journal of Supercomputing10.1007/s11227-022-04802-y79:5(4983-5012)Online publication date: 1-Mar-2023
  • (2018)Host-Based Intrusion Detection System with System CallsACM Computing Surveys10.1145/321430451:5(1-36)Online publication date: 19-Nov-2018
  1. Online anomaly detection for multi-source VMware using a distributed streaming framework

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Software
    Software  Volume 46, Issue 11
    November 2016
    143 pages
    ISSN:0038-0644
    EISSN:1097-024X
    Issue’s Table of Contents

    Publisher

    John Wiley & Sons, Inc.

    United States

    Publication History

    Published: 01 November 2016

    Author Tags

    1. Apache Spark
    2. Apache Storm
    3. data center
    4. incremental clustering
    5. real-time anomaly detection
    6. resource scheduling

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 09 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Implementation and visualization of a netflow log data lake system for cyberattack detection using distributed deep learningThe Journal of Supercomputing10.1007/s11227-022-04802-y79:5(4983-5012)Online publication date: 1-Mar-2023
    • (2018)Host-Based Intrusion Detection System with System CallsACM Computing Surveys10.1145/321430451:5(1-36)Online publication date: 19-Nov-2018

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media