[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Driving on Point Clouds: Motion Planning, Trajectory Optimization, and Terrain Assessment in Generic Nonplanar Environments

Published: 01 August 2017 Publication History

Abstract

We present a practical approach to global motion planning and terrain assessment for ground robots in generic three-dimensional 3D environments, including rough outdoor terrain, multilevel facilities, and more complex geometries. Our method computes optimized six-dimensional trajectories compliant with curvature and continuity constraints directly on unordered point cloud maps, omitting any kind of explicit surface reconstruction, discretization, or topology extraction. We assess terrain geometry and traversability on demand during motion planning, by fitting robot-sized planar patches to the map and analyzing the local distribution of map points. Our motion planning approach consists of sampling-based initial trajectory generation, followed by precise local optimization according to a custom cost measure, using a novel, constraint-aware trajectory optimization paradigm. We embed these methods in a complete autonomous navigation system based on localization and mapping by means of a 3D laser scanner and iterative closest point matching, suitable for both static and dynamic environments. The performance of the planning and terrain assessment algorithms is evaluated in offline experiments using recorded and simulated sensor data. Finally, we present the results of navigation experiments in three different environments-rough outdoor terrain, a two-level parking garage, and a dynamic environment, demonstrating how the proposed methods enable autonomous navigation in complex 3D terrain.

References

[1]
Arvanitakis, I., Tzes, A., &Thanou, M. 2013. Geodesic motion planning on 3D-terrains satisfying the robot's kinodynamic constraints. In Proceedings of the Annual Conference of the IEEE Industrial Electronics Society IECON, Vienna, Austria.
[2]
Bajracharya, M., Howard, A., Matthies, L. H., Tang, B., &Turmon, M. 2009. Autonomous Off-road navigation with end-to-end learning for the LAGR Program. Journal of Field Robotics, Volume 26 Issue 1, pp.3-25.
[3]
Bellutta, P., Manduchi, R., Matthies, L., Owens, K., &Rankin, A. 2000. Terrain perception for DEMO III. In Proceedings of the IEEE Intelligent Vehicles Symposium, Dearborn, MI.
[4]
Bosse, M., Newman, P., Leonard, J., &Teller, S. 2004. Simultaneous Localization and map building in large-scale cyclic environments using the Atlas framework. International Journal of Robotics Research, Volume 23 Issue 12, pp.1113-1139.
[5]
Breitenmoser, A., &Siegwart, R. 2012. Surface reconstruction and path planning for industrial inspection with a climbing robot. In Proceedings of the International Conference on Applied Robotics for the Power Industry CARPI, Zürich, Switzerland.
[6]
Brock, O., &Khatib, O. 2002. Elastic strips: A framework for motion generation in human environments. International Journal of Robotics Research, Volume 21 Issue 12, pp.1031-1052.
[7]
Cherif, M. 1999. Motion Planning for All-Terrain Vehicles: A Physical Modeling Approach for Coping with Dynamic and Contact Interaction Constraints. IEEE Transactions on Robotics and Automation, Volume 15 Issue 2, pp.202-218.
[8]
Cherubini, A., &Chaumette, F. 2013. Visual navigation of a mobile robot with laser-based collision avoidance. International Journal of Robotics Research, Volume 32 Issue 2, pp.189-205.
[9]
Colas, F., Mahesh, S., Pomerleau, F., Liu, M., &Siegwart, R. 2013. Path planning and execution for search and rescue ground Robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan.
[10]
Connors, J., &Elkaim, G. 2007. Manipulating B-spline based paths for obstacle avoidance in autonomous ground vehicles. In Proceedings of the ION National Technical Meeting, San Diego, CA.
[11]
Daily, M., Harris, J., Keirsey, D., Olin, K., Payton, D., Reiser, K., ' Wong, V. 1988. Autonomous cross-country navigation with the ALV. In Proceedings of the IEEE International Conference on Robotics and Automation ICRA, Philadelphia, PA.
[12]
Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numerische Mathematik, Volume 1 Issue 1, pp.269-271.
[13]
Dolgov, D., Thrun, S., Montemerlo, M., &Diebel, J. 2010. Path planning for autonomous vehicles in unknown semi-structured environments. International Journal of Robotics Research, Volume 29 Issue 5, pp.485-501.
[14]
Furgale, P., &Barfoot, T. D. 2010. Visual teach and repeat for long-range rover autonomy. Journal of Field Robotics, Volume 27 Issue 5, pp.534-560.
[15]
Ganganath, N., Cheng, C.-t., &Tse, C. K. 2015. A constraint-aware heuristic path planner for finding energy-efficient paths on uneven terrains. IEEE Transactions on Industrial Informatics, Volume 11 Issue 3, pp.601-611.
[16]
Garrido, S., Malfaz, M., &Blanco, D. 2013. Application of the fast marching method for outdoor motion planning in robotics. Robotics and Autonomous Systems, Volume 61 Issue 2, pp.106-114.
[17]
Gaw, D., &Meystel, A. 1986. Minimum-time navigation of an unmanned mobile robot in a 2-1/2D world with obstacles. In Proceedings of the IEEE International Conference on Robotics and Automation ICRA, San Francisco, CA.
[18]
Gennery, D. B. 1999. Traversability analysis and path planning for a planetary rover. Autonomous Robots, Volume 6 Issue 2, pp.131-146.
[19]
Gingras, D., Dupuis, E., Payre, G., &de¿Lafontaine, J. 2010. Path planning based on fluid mechanics for mobile robots using unstructured terrain models. In Proceedings of the IEEE International Conference on Robotics and Automation ICRA, Anchorage, AK.
[20]
Goldberg, S. B., Maimone, M. W., &Matthies, L. 2002. Stereo vision and rover navigation software for planetary exploration. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT.
[21]
Guernane, R., &Achour, N. 2011. Generating optimized paths for motion planning. Robotics and Autonomous Systems, Volume 59 Issue 10, pp.789-800.
[22]
Guo, Y., Parker, L. E., Jung, D., &Dong, Z. 2003. Performance-based rough terrain navigation for nonholonomic mobile robots. In Proceedings of the Annual Conference of the IEEE Industrial Electronics Society IECON, Roanoke, VA.
[23]
Hamner, B., Singh, S., Roth, S., &Takahashi, T. 2008. An efficient system for combined route traversal and collision avoidance. Autonomous Robots, Volume 24 Issue 4, pp.365-385.
[24]
Helmick, D., Angelova, A., &Matthies, L. 2009. Terrain adaptive navigation for planetary rovers. Journal of Field Robotics, Volume 26 Issue 4, pp.391-410.
[25]
Hertle, A., &Dornhege, C. 2013. Efficient extensible path planning on 3D terrain using behavior modules. In Proceedings of the European Conference on Mobile Robots ECMR, Barcelona, Spain.
[26]
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., &Stuetzle, W. 1992. Surface reconstruction from unorganized points. In Proceedings of the 19th annual conference on Computer Graphics and Interactive Techniques SIGGRAPH, Chicago, IL.
[27]
Howard, A., &Seraji, H. 2001. Vision-based terrain characterization and traversability assessment. Journal of Robotic Systems, Volume 18 Issue 10, pp.577-587.
[28]
Howard, T. M. 2009. Adaptive model-predictive planning for navigation in complex environments PhD dissertation. Carnegie Mellon University, Pittsburgh PA.
[29]
Howard, T. M., &Kelly, A. 2007. Optimal rough terrain trajectory generation for wheeled mobile robots. International Journal of Robotics Research, Volume 26 Issue 2, pp.141-166.
[30]
Iagnemma, K., Genot, F., &Dubowsky, S. 1999. Rapid physics-based rough-terrain rover planning with sensor and control uncertainty. In Proceedings of the IEEE International Conference on Robotics and Automation ICRA, Detroit, MI, USA.
[31]
Ishigami, G., Otsuki, M., &Kubota, T. 2013. Range-dependent terrain mapping and multipath planning using cylindrical coordinates for a planetary exploration rover. Journal of Field Robotics, Volume 30 Issue 4, pp.536-551.
[32]
Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., &Schaal, S. 2011. STOMP: Stochastic trajectory optimization for motion planning. In Proceedings of the IEEE International Conference on Robotics and Automation ICRA, Shanghai, China.
[33]
Karaman, S., &Frazzoli, E. 2011. Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research, Volume 30 Issue 7, pp.846-894.
[34]
Karumanchi, S., Allen, T., Bailey, T., &Scheding, S. 2010. Non-parametric Learning to aid path planning over slopes. International Journal of Robotics Research, Volume 29 Issue 8, pp.997-1018.
[35]
Kavraki, L. E., Svestka, P., Latombe, J.-C., &Overmars, M. H. 1996. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, Volume 12 Issue 4, pp.566-580.
[36]
Kelly, A., &Stentz, A. 1998. Rough terrain autonomous mobility: Part 2. An active vision, predictive control approach. Autonomous Robots, Volume 5 Issue 2, pp.163-198.
[37]
Kelly, A., Stentz, A., Amidi, O., Bode, M., Bradley, D., Diaz-Calderon, A., ' Warner, R. 2006. Toward reliable off road autonomous vehicles operating in challenging environments. International Journal of Robotics Research, Volume 25 Issue 5-6, pp.449-483.
[38]
Khan, Y. N., Komma, P., &Zell, A. 2011. High resolution visual terrain classification for outdoor robots. In Proceedings of the IEEE International Conference on Computer Vision ICCV, Barcelona, Spain.
[39]
Khatib, O. 1986. Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, Volume 5 Issue 1, pp.90-98.
[40]
Kobilarov, M. B., &Sukhatme, G. S. 2005. Near time-optimal constrained trajectory planning on outdoor terrain. In Proceedings of the IEEE International Conference on Robotics and Automation ICRA, Barcelona, Spain.
[41]
Konolige, K., Agrawal, M., Blas, M. R., Bolles, R. C., Gerkey, B., Solí, J., &Sundaresan, A. 2009. Mapping, navigation, and learning for off-road traversal. Journal of Field Robotics, Volume 26 Issue 1, pp.88-113.
[42]
Krebs, A., Pradalier, C., &Siegwart, R. 2010. Adaptive rover behavior based on online empirical evaluation: Rover-terrain interaction and near-to-far learning. Journal of Field Robotics, Volume 27 Issue 2, pp.158-180.
[43]
Krüsi, P., Bücheler, B., Pomerleau, F., Schwesinger, U., Siegwart, R., &Furgale, P. 2015. Lighting-invariant adaptive route following using iterative closest point matching. Journal of Field Robotics, Volume 32 Issue 4, pp.534-564.
[44]
Kümmerle, R., Hähnel, D., Dolgov, D., Thrun, S., &Burgard, W. 2009. Autonomous driving in a multi-level parking structure. In Proceedings of the IEEE International Conference on Robotics and Automation ICRA, Kobe, Japan.
[45]
Lacaze, A., Murphy, K., &DelGiorno, M. 2002. Autonomous mobility for the Demo III experimental unmanned vehicles. In Proceedings of AUVSI, Lake Buena Vista, FL.
[46]
Lacroix, S., Mallet, A., Bonnafous, D., Bauzil, G., Fleury, S., Herrb, M., &Chatila, R. 2002. Autonomous rover navigation on unknown terrains: Functions and integration. International Journal of Robotics Research, Volume 21 Issue 10-11, pp.917.
[47]
Lalonde, J.-F., Vandapel, N., Huber, D. F., &Hebert, M. 2006. Natural terrain classification using three-dimensional ladar data for ground robot mobility. Journal of Field Robotics, Volume 23 Issue 10, pp.39-861.
[48]
Lamiraux, F., Bonnafous, D., &Lefebvre, O. 2004. Reactive path deformation for nonholonomic mobile robots. IEEE Transactions on Robotics, Volume 20 Issue 6, pp.967-977.
[49]
Langer, D., Rosenblatt, J. K., &Hebert, M. 1994. A behavior-based system for off-road navigation. IEEE Transactions on Robotics and Automation, Volume 10 Issue 6, pp.776-783.
[50]
Lau, B., Sprunk, C., &Burgard, W. 2009. Kinodynamic motion planning for mobile robots using splines. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, St. Louis, MO.
[51]
LaValle, S. M. 1998. Rapidly-exploring random trees: A new tool for path planning. Report No. TR 98-11, Iowa State University, Ames, IA.
[52]
LaValle, S. M., &Kuffner, J. J.Jr., 2001. Randomized kinodynamic planning. International Journal of Robotics Research, Volume 20 Issue 5, pp.378-400.
[53]
Levoy, M., Gerth, J., Curless, B., &Pull, K. 2015. The Stanford 3D scanning repository. "http://graphics.stanford.edu/data/3Dscanrep".
[54]
Liu, M., &Siegwart, R. 2014. Navigation on point-cloud-a Riemannian metric approach. In Proceedings of the IEEE International Conference on Robotics and Automation ICRA, Hong Kong, China.
[55]
Maimone, M., Biesiadecki, J., Tunstel, E., Cheng, Y., &Leger, C. 2006. Surface navigation and mobility intelligence on the Mars Exploration Rovers. In A.Howard &E. W.Tunstel Eds., Intelligence for space robotics pp. pp.45-69. San Antonio, TX: TSI Press.
[56]
Manduchi, R., Castano, A., Talukder, A., &Matthies, L. 2005. Obstacle Detection and Terrain classification for autonomous off-road navigation. Autonomous Robots, Volume 18 Issue 1, pp.81-102.
[57]
Marshall, J., Barfoot, T. D., &Larsson, J. 2008. Autonomous underground tramming for center- articulated vehicles. Journal of Field Robotics, Volume 25 Issue 6-7, pp.400-421.
[58]
McManus, C., Furgale, P., Stenning, B., &Barfoot, T. D. 2013. Lighting-invariant visual teach and repeat using appearance-based Lidar. Journal of Field Robotics, Volume 30 Issue 2, pp.254-287.
[59]
Medioni, G., Lee, M.-S., &Tang, C.-K. 2000. A computational framework for segmentation and grouping. Amsterdam: Elsevier.
[60]
Menna, M., Gianni, M., Ferri, F., &Pirri, F. 2014. Real-time autonomous 3D navigation for tracked vehicles in rescue environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, Chicago, IL.
[61]
Miró, J. V., Dumonteil, G., Beck, C., &Dissanayake, G. 2010. A Kyno-dynamic metric to plan stable paths over uneven terrain. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, Taipei, Taiwan.
[62]
Moravec, H. P. 1980. Obstacle avoidance and navigation in the real world by a seeing robot rover PhD dissertation. Stanford University, Stanford, CA.
[63]
Nagy, B., &Kelly, A. 2001. Trajectory generation for car-like robots using cubic curvature polynomials. In Proceedings of the International Conference on Field and Service Robotics FSR, Helsinki, Finland.
[64]
Papadakis, P. 2013. Terrain traversability analysis methods for unmanned ground vehicles: A survey. Engineering Applications of Artificial Intelligence, Volume 26 Issue 4, pp.1373-1385.
[65]
Park, C., Pan, J., &Manocha, D. 2012. ITOMP: Incremental trajectory optimization for real-time replanning in dynamic environments. In Proceedings of the International Conference on Automated Planning and Scheduling ICAPS, Atibaia, S ao Paulo, Brazil.
[66]
Peynot, T., Lui, S.-T., McAllister, R., Fitch, R., &Sukkarieh, S. 2014. Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain. Journal of Field Robotics, Volume 31 Issue 6, pp.969-995.
[67]
Pfaff, P., Triebel, R., &Burgard, W. 2007. An efficient extension to elevation maps for outdoor terrain mapping and loop closing. International Journal of Robotics Research, Volume 26 Issue 2, pp.217-230.
[68]
Pivtoraiko, M., &Kelly, A. 2005. Efficient constrained path planning via search in state lattices. In Proceedings of the International Symposium on Artificial Intelligence, Robotics, and Automation in Space iSAIRAS, Munich, Germany.
[69]
Pomerleau, F., Colas, F., Siegwart, R., &Magnenat, S. 2013. Comparing ICP variants on real-world data sets. Autonomous Robots, Volume 34 Issue 3, pp.133-148.
[70]
Pomerleau, F., Krüsi, P., Colas, F., Furgale, P., &Siegwart, R. 2014. Long-term 3D map maintenance in dynamic environments. In Proceedings of the IEEE International Conference on Robotics and Automation ICRA, Hong Kong, China.
[71]
Quinlan, S., &Khatib, O. 1993. Elastic bands: connecting path planning and control. In Proceedings of the IEEE International Conference on Robotics and Automation ICRA, Atlanta, GA.
[72]
Rekleitis, I., Bedwani, J.-L., Dupuis, E., Lamarche, T., &Allard, P. 2013. Autonomous over-the-horizon navigation using LIDAR data. Autonomous Robots, Volume 34 Issue 1-2, pp.1-18.
[73]
Rowe, N. C., &Ross, R. S. 1990. Optimal grid-free path planning across arbitrarily contoured terrain with anisotropic friction and gravity effects. IEEE Transactions on Robotics and Automation, Volume 6 Issue 5, pp.540-553.
[74]
Rusu, R. B., Sundaresan, A., Morisset, B., Hauser, K., Agrawal, M., &Latombe, J.-C. 2009. Leaving flatland: Efficient real-time three-dimensional perception and motion planning. Journal of Field Robotics, Volume 26 Issue 10, pp.841-862.
[75]
Santamaria-Navarro, A., Teniente, E. H., Morta, M., &Andrade-Cetto, J. 2014. Terrain classification in complex three-dimensional outdoor environments. Journal of Field Robotics, Volume 31 Issue 1, pp.42-60.
[76]
Santana, P., Guedes, M., Correia, L., &Barata, J. 2011. Stereo-based all-terrain obstacle detection using visual saliency. Journal of Field Robotics, Volume 28 Issue 2, pp.241-263.
[77]
Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., ' Abbeel, P. 2014. Motion planning with sequential convex optimization and convex collision checking. International Journal of Robotics Research, Volume 33 Issue 9, pp.1251-1270.
[78]
Sermanet, P., Hadsell, R., Scoffier, M., Grimes, M., Ben, J., Erkan, A., ' LeCun, Y. 2009. A multirange architecture for collision-free off-road robot navigation. Journal of Field Robotics, Volume 26 Issue 1, pp.52-87.
[79]
Shiller, Z., &Gwo, Y.-R. 1991. Dynamic motion planning of autonomous vehicles. IEEE Transactions on Robotics and Automation, Volume 7 Issue 2, pp.241-249.
[80]
Shum, A., Morris, K., &Khajepour, A. 2015. Direction-dependent optimal path planning for autonomous vehicles. Robotics and Autonomous Systems, Volume 70, pp.202-214.
[81]
Silver, D., Bagnell, J. A., &Stentz, A. 2010. Learning from demonstration for autonomous navigation in complex unstructured terrain. International Journal of Robotics Research, Volume 29 Issue 12, pp.1565-1592.
[82]
Siméon, T. 1993. Motion planning for a non-holonomic mobile robot on 3-dimensional terrains. In C.Laugier Ed., Geometric reasoning for perception and action Vol. Volume 708, pp. pp.38-50. Lecture Notes in Computer Science. Berlin: Springer.
[83]
Siméon, T., &Dacre-Wright, B. 1993. A practical motion planner for all-terrain mobile robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, Yokohama, Japan.
[84]
Singh, S., Simmons, R., Smith, T., Stentz, A., Verma, V., Yahja, A., &Schwehr, K. 2000. Recent progress in local and global traversability for planetary rovers. In Proceedings of the IEEE International Conference on Robotics and Automation ICRA, San Francisco, CA.
[85]
Sofman, B., Lin, E., Bagnell, J. A., Cole, J., Vandapel, N., &Stentz, A. 2006. Improving robot navigation through self-supervised online learning. Journal of Field Robotics, Volume 23 Issue 11-12, pp.1059-1075.
[86]
Stenning, B. E., McManus, C., &Barfoot, T. D. 2013. Planning using a network of reusable paths: A physical embodiment of a rapidly exploring random tree. Journal of Field Robotics, Volume 30 Issue 6, pp.916-950.
[87]
Stentz, A., &Hebert, M. 1995. A complete navigation system for goal acquisition in unknown environments. Autonomous Robots, Volume 2 Issue 2, pp.127-145.
[88]
Stoyanov, T., Magnusson, M., Andreasson, H., &Lilienthal, A. J. 2010. Path planning in 3D environments using the normal distributions transform. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, Taipei, Taiwan.
[89]
Stumm, E., Breitenmoser, A., Pomerleau, F., Pradalier, C., &Siegwart, R. 2012. Tensor-voting-based navigation for robotic inspection of 3D surfaces using lidar point clouds. International Journal of Robotics Research, Volume 31 Issue 12, pp.1465-1488.
[90]
Sun, Z., &Reif, J. H. 2005. On finding energy-minimizing paths on terrains. IEEE Transactions on Robotics, Volume 21 Issue 1, pp.102-114.
[91]
Tâche, F., Fischer, W., Caprari, G., Siegwart, R., Moser, R., &Mondada, F. 2009. Magnebike: A magnetic wheeled robot with high mobility for inspecting complex-shaped structures. Journal of Field Robotics, Volume 26 Issue 5, pp.453-476.
[92]
Teniente, E. H., &Andrade-Cetto, J. 2013. HRA*: Hybrid randomized path planning for complex 3D environments. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems IROS, Tokyo, Japan.
[93]
Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., ' Mahoney, P. 2006. Stanley: The robot that won the DARPA Grand Challenge. Journal of Field Robotics, Volume 23 Issue 9, pp.661-692.
[94]
Urmson, C., Ragusa, C., Ray, D., Anhalt, J., Bartz, D., Galatali, T., ' Struble, J. 2006. A robust Approach to High-Speed Navigation for Unrehearsed Desert Terrain. Journal of Field Robotics, Volume 23 Issue 8, pp.467-508.
[95]
Wellington, C., Courville, A., &Stentz, A. 2005. Interacting Markov random fields for simultaneous terrain modeling and obstacle detection. In Proceedings of Robotics: Science and Systems RSS, Cambridge, MA.
[96]
Woods, M., Shaw, A., Tidey, E., Van¿Pham, B., Lacroix, S., Mukherji, R., ' Chong, G. 2014. Seeker autonomous long-range rover navigation for remote exploration. Journal of Field Robotics, Volume 31 Issue 6, pp.940-968.
[97]
Ye, C. 2003. A new terrain mapping method for mobile robots obstacle negotiation. In Proceedings of the UGV Technology Conference at the 2003 SPIE AeroSense Symposium, Orlando, FL.
[98]
Zucker, M., Ratliff, N., Dragan, A. D., Pivtoraiko, M., Klingensmith, M., Dellin, C. M., ' Srinivasa, S. S. 2013. CHOMP: Covariant Hamiltonian optimization for motion planning. International Journal of Robotics Research, Volume 32 Issue 9-10, pp.1164-1193.

Cited By

View all
  • (2024)An Efficient Global Trajectory Planner for Highly Dynamical Nonholonomic Autonomous Vehicles on 3-D TerrainsIEEE Transactions on Robotics10.1109/TRO.2023.334403040(1309-1326)Online publication date: 1-Jan-2024
  • (2024)3D traversability analysis and path planning based on mechanical effort for UGVs in forest environmentsRobotics and Autonomous Systems10.1016/j.robot.2023.104560171:COnline publication date: 1-Jan-2024
  • (2024)Cluster-based two-branch framework for point cloud attribute compressionThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-023-03146-940:9(5947-5960)Online publication date: 1-Sep-2024
  • Show More Cited By
  1. Driving on Point Clouds: Motion Planning, Trajectory Optimization, and Terrain Assessment in Generic Nonplanar Environments

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Field Robotics
    Journal of Field Robotics  Volume 34, Issue 5
    August 2017
    203 pages
    ISSN:1556-4959
    EISSN:1556-4967
    Issue’s Table of Contents

    Publisher

    John Wiley and Sons Ltd.

    United Kingdom

    Publication History

    Published: 01 August 2017

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)An Efficient Global Trajectory Planner for Highly Dynamical Nonholonomic Autonomous Vehicles on 3-D TerrainsIEEE Transactions on Robotics10.1109/TRO.2023.334403040(1309-1326)Online publication date: 1-Jan-2024
    • (2024)3D traversability analysis and path planning based on mechanical effort for UGVs in forest environmentsRobotics and Autonomous Systems10.1016/j.robot.2023.104560171:COnline publication date: 1-Jan-2024
    • (2024)Cluster-based two-branch framework for point cloud attribute compressionThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-023-03146-940:9(5947-5960)Online publication date: 1-Sep-2024
    • (2023)Subpaving-Map: Fast Terrain Mapping for Outdoor Scenes based on Set-membership TheoryProceedings of the 2023 3rd International Conference on Robotics and Control Engineering10.1145/3598151.3598436(227-231)Online publication date: 12-May-2023
    • (2023)An autonomous navigation approach for unmanned vehicle in off-road environment with self-supervised traversal cost predictionApplied Intelligence10.1007/s10489-023-04518-353:17(20091-20109)Online publication date: 30-Mar-2023
    • (2022)How Rough Is the Path? Terrain Traversability Estimation for Local and Global Path PlanningIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2022.315032823:9(16462-16473)Online publication date: 1-Sep-2022
    • (2022)Hilbert Space Filling Curve Based Scan-Order for Point Cloud Attribute CompressionIEEE Transactions on Image Processing10.1109/TIP.2022.318653231(4609-4621)Online publication date: 1-Jan-2022
    • (2022)G-VOM: A GPU Accelerated Voxel Off-Road Mapping System2022 IEEE Intelligent Vehicles Symposium (IV)10.1109/IV51971.2022.9827107(1480-1486)Online publication date: 4-Jun-2022
    • (2022)Coverage Path Planning in Large-scale Multi-floor Urban Environments with Applications to Autonomous Road Sweeping2022 International Conference on Robotics and Automation (ICRA)10.1109/ICRA46639.2022.9811941(3328-3334)Online publication date: 23-May-2022
    • (2022)Optimal path planning using a continuous anisotropic model for navigation on irregular terrainsIntelligent Service Robotics10.1007/s11370-022-00450-616:1(19-32)Online publication date: 5-Dec-2022
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media