[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Regulation‐triggered adaptive control of a hyperbolic PDE‐ODE model with boundary interconnections

Published: 05 August 2021 Publication History

Summary

We present a certainty equivalence‐based adaptive boundary control scheme with a regulation‐triggered batch least‐squares identifier, for a heterodirectional transport partial differential equation‐ordinary differential equation (PDE‐ODE) system where the transport speeds of both transport PDEs are unknown. We use a nominal controller which is fed piecewise‐constant parameter estimates from an event‐triggered parameter update law that applies a least‐squares estimator to data “batches” collected over time intervals between the triggers. A parameter update is triggered by an observed growth in the norm of the PDE state. The proposed triggering‐based adaptive control guarantees: (1) the absence of a Zeno phenomenon; (2) parameter estimates are convergent to the true values in finite time (from most initial conditions); (3) exponential regulation of the plant states to zero. The effectiveness of the proposed design is verified by a numerical example.

References

[1]
Goatin P. The Aw‐Rascle vehicular traffic flow model with phase transitions. Math Comput Model. 2006;44:287‐303.
[2]
Yu H, Krstic M. Traffic congestion control for Aw‐Rascle‐Zhang model. Automatica. 2019;100:38‐51.
[3]
Yu H, Krstic M. Bilateral boundary control of moving shockwave in LWR model of congested traffic. IEEE Trans Automat Contr. 2020. https://doi.org/10.1109/TAC.2020.2994031.
[4]
Zhang L, Prieur C. Necessary and sufficient conditions on the exponential stability of positive hyperbolic systems. IEEE Trans Automat Contr. 2017;62:3610‐3617.
[5]
Diagne A, Diagne M, Tang S‐X, Krstic M. Backstepping stabilization of the linearized Saint‐Venant‐Exner model. Automatica. 2017;76:345‐354.
[6]
Prieur C, Winkin J. Boundary feedback control of linear hyperbolic systems: application to the Saint‐Venant‐Exner equations. Automatica. 2018;89:44‐51.
[7]
Prieur C, Winkin J, Bastin G. Robust boundary control of systems of conservation laws. Math Control Signals Syst. 2008;20:173‐197.
[8]
Hasan A, Imsland L. Moving horizon estimation in managed pressure drilling using distributed models. Paper presented at: Proceedings of the IEEE Conference on Control Applications; 2014; Antibes, France.
[9]
Hasan A, Aama O, Krstic M. Boundary observer design for hyperbolic PDE‐ODE cascade systems. Automatica. 2016;68:75‐86.
[10]
Coron JM, Vazquez R, Krstic M, Bastin G. Local exponential H2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping. SIAM J Control Optim. 2013;51(3):2005‐2035.
[11]
Vazquez R, Krstic M, Coron JM. Backstepping boundary stabilization and state estimation of a 2 × 2 linear hyperbolic system. Paper presented at: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC‐ECC); 2011:4937‐4942.
[12]
Di Meglio F, Vazquez R, Krstic M. Stabilization of a system of n + 1 coupled first‐order hyperbolic linear PDEs with a single boundary input. IEEE Trans Automat Contr. 2013;58(12):3097‐3111.
[13]
Hu L, Di Meglio F, Vazquez R, Krstic M. Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs. IEEE Trans Automat Contr. 2016;61(11):3301‐3314.
[14]
Bou D. Saba F, Bribiesca‐Argomedo M, Loreto D, Eberard D. Strictly proper control design for the stabilization of 2 × 2 linear hyperbolic ODE‐PDE‐ODE systems. Paper presented at: Proceedings of the 58th IEEE Conference on Decision and Control; December 2019:4996‐5001.
[15]
Deutscher J, Gehring N, Kern R. Output feedback control of general linear heterodirectional hyperbolic PDE‐ODE systems with spatially‐varying coefficients. Int J Control. 2019;92(10):2274‐2290.
[16]
Di Meglio F, Bribiesca‐Argomedo F, Hu L, Krstic M. Stabilization of coupled linear heterodirectional hyperbolic PDE‐ODE systems. Automatica. 2018;87:281‐289.
[17]
Wang J, Krstic M, Pi Y. Control of a 2 × 2 coupled linear hyperbolic system sandwiched between two ODEs. Int J Robust Nonlin. 2018;28:3987‐4016.
[18]
Bekiaris‐Liberis N, Krstic M. Compensation of wave actuator dynamics for nonlinear systems. IEEE Trans Automat Contr. 2014;59(6):1555‐1570.
[19]
Bresch‐Pietri D, Krstic M. Output‐feedback adaptive control of a wave PDE with boundary anti‐damping. Automatica. 2014;50(5):1407‐1415.
[20]
Cai X, Krstic M. Nonlinear control under wave actuator dynamics with time‐and state‐dependent moving boundary. Int J Robust Nonlin. 2015;25(2):222‐251.
[21]
Cai X, Krstic M. Nonlinear stabilization through wave PDE dynamics with a moving uncontrolled boundary. Automatica. 2016;68:27‐38.
[22]
Wang J, Pi Y, Krstic M. Balancing and suppression of oscillations of tension and cage in dual‐cable mining elevators. Automatica. 2018;98:223‐238.
[23]
Wang J, Krstic M. Vibration suppression for coupled wave PDEs in deep‐sea construction. IEEE Trans Contr Syst Technol. 2020. https://doi.org/10.1109/TCST.2020.3009660.
[24]
Benosman M, Borggaard J. Robust nonlinear state estimation for a class of infinite‐dimensional systems using reduced‐order models. Int J Control. 2019. https://doi.org/10.1080/00207179.2019.1645359.
[25]
Benosman M, Borggaard J, San O, Kramer B. Learning‐based robust stabilization for reduced‐order models of 2D and 3D Boussinesq equations. Appl Math Model. 2017;49:162‐181.
[26]
Benosman M. Model‐based vs data‐driven adaptive control: an overview. Int J Adapt Control Signal Process. 2018;32:753‐776.
[27]
Krstic M. Systematization of approaches to adaptive boundary stabilization of PDEs. Int J Robust Nonlin. 2006;16:801‐818.
[28]
Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design. Hoboken, NJ: John Wiley & Sons; 1995.
[29]
Krstic M, Smyshlyaev A. Adaptive boundary control for unstable parabolic PDEs‐Part I: Lyapunov design. IEEE Trans Automat Contr. 2008;53:1575‐1591.
[30]
Smyshlyaev A, Krstic M. Adaptive boundary control for unstable parabolic PDEs‐Part II: estimation‐based designs. Automatica. 2007;43:1543‐1556.
[31]
Smyshlyaev A, Krstic M. Adaptive boundary control for unstable parabolic PDEs‐Part III: output feedback examples with swapping identifiers. Automatica. 2007;43:1557‐1564.
[32]
Anfinsen H, Aamo OM. Adaptive output‐feedback stabilization of linear 2 × 2 hyperbolic systems using anti‐collocated sensing and control. Syst Control Lett. 2017;104:86‐94.
[33]
Anfinsen H, Aamo OM. Adaptive stabilization of 2 × 2 linear hyperbolic systems with an unknown boundary parameter from collocated sensing and control. IEEE Trans Automat Contr. 2017;62:6237‐6249.
[34]
Anfinsen H, Aamo OM. Model reference adaptive control of 2 × 2 coupled linear hyperbolic PDEs. IEEE Trans Automat Contr. 2018;63:2405‐2420.
[35]
Anfinsen H, Aamo OM. Adaptive control of linear 2 × 2 hyperbolic systems. Automatica. 2018;87:69‐82.
[36]
Anfinsen H, Aamo OM. Adaptive Control of Hyperbolic PDEs. New York, NY: Spring; 2019.
[37]
Bernard P, Krstic M. Adaptive output‐feedback stabilization of non‐local hyperbolic PDEs. Automatica. 2014;50:2692‐2699.
[38]
Bekiaris‐Liberis N, Jankovic M, Krstic M. Adaptive stabilization of LTI systems with distributed input delay. Int J Adapt Control Signal Process. 2013;27:46‐65.
[39]
Wang J, Tang SX, Krstic M. Adaptive output‐feedback control of torsional vibration in off‐shore rotary oil drilling systems. Automatica. 2020;111:108640.
[40]
Xu Z, Liu Y. Adaptive boundary stabilization for first‐order hyperbolic PDEs with unknown spatially varying parameter. Int J Robust Nonlin. 2016;26:613‐628.
[41]
Zhu Y, Krstic M, Su H. Adaptive global stabilization of uncertain multi‐input linear time‐delay systems by PDE full‐state feedback. Automatica. 2018;96:270‐279.
[42]
Zhu Y, Krstic M, Su H. Adaptive output feedback control for uncertain linear time‐delay systems. IEEE Trans Automat Contr. 2017;62:545‐560.
[43]
Zhu Y, Krstic M, Su H. Delay‐adaptive control for linear systems with distributed input delays. Automatica. 2020;116:108902.
[44]
Karafyllis I, Krstic M. Adaptive certainty‐equivalence control with regulation‐triggered finite‐time least‐squares identification. IEEE Trans Automat Contr. 2018;63:3261‐3275.
[45]
Karafyllis I, Kontorinaki M, Krstic M. Adaptive control by regulation‐triggered batch least‐squares. IEEE Trans Automat Contr. 2020;65(7):2842‐2855.
[46]
Bagheri M, Karafyllis I, Naseradinmousavi P, Krstic M. Adaptive control of a two‐link robot using batch least‐squares identifier. IEEE/CCA J Automat Sin. 2021;8:86‐93.
[47]
Karafyllis I, Krstic M, Chrysafi K. Adaptive boundary control of constant‐parameter reaction‐diffusion PDEs using regulation‐triggered finite‐time identification. Automatica. 2019;103:166‐179.
[48]
Anfinsen H, Holta H, Aamo OM. Adaptive control of a scalar 1‐D linear hyperbolic PDE with uncertain transport speed using boundary sensing, Paper presented at: Proceedings of the American Control Conference; 2020.
[49]
Anfinsen H, Holta H, Aamo OM. Adaptive control of a linear hyperbolic PDE with uncertain transport speed and a spatially varying coefficient. Paper presented at: Proceedings of the 28th Mediterranean Conference on Control and Automation; 2020:945‐951.
[50]
Wang J, Krstic M, Karafyllis I. Adaptive regulation‐triggered control of hyperbolic PDEs by batch least‐squares. Paper presented at: Proceedings of the American Control Conference; 2021:to appear.
[51]
Saldivar MB, Mondie S, Loiseau JJ, Rasvan V. Stick‐slip oscillations in oillwell drilstrings: distributed parameter and neutral type retarded model approaches. Paper presented at: Proceedings of the IFAC 18th World Congress; 2011:283‐289.
[52]
Bastin G, Coron JM. Stability and Boundary Stabilization of 1 − D Hyperbolic Systems. Basel: Birkhauser; 2016.
[53]
Oliveira TR, Krstic M. Extremum seeking feedback with wave partial differential equation compensation. ASME J Dyn Syst Meas Control. 2021;143:041002.
[54]
Aarsnes UJ, Aamo OM, Krstic M. Extremum seeking for real‐time optimal drilling control. Paper presented at: Proceedings of the American Control Conference; 2019:5222‐5227.
[55]
Vazquez R. Boundary Control Laws and Observer Design for Convective, Turbulent and Magnetohydrodynamic Flows [Ph.D. thesis]. San Diego, CA: University of California; 2006.
[56]
Davo MA, Bresch‐Pietri D, Prieur C, Di Meglio F. Stability analysis of a 2 × 2 linear hyperbolic system with a sampled‐data controller via backstepping method and looped‐functionals. IEEE Trans Automat Contr. 2018;64(4):1718‐1725.
[57]
Deutscher J. Finite‐time output regulation for linear 2 × 2 hyperbolic systems using backstepping. Automatica. 2017;75:54‐62.
[58]
Deutscher J. Output regulation for general linear heterodirectional hyperbolic systems with spatially‐varying coefficients. Automatica. 2017;85:34‐42.
[59]
Krstic M. Delay Compensation for Nonlinear, Adaptive, and PDE Systems. New York, NY: Springer; 2009.
[60]
Prieur C, Girard A, Witrant E. Stability of switched linear hyperbolic systems by Lyapunov techniques. IEEE Trans Automat Contr. 2014;59(8):2196‐2202.

Index Terms

  1. Regulation‐triggered adaptive control of a hyperbolic PDE‐ODE model with boundary interconnections
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image International Journal of Adaptive Control and Signal Processing
          International Journal of Adaptive Control and Signal Processing  Volume 35, Issue 8
          August 2021
          237 pages
          ISSN:0890-6327
          EISSN:1099-1115
          DOI:10.1002/acs.v35.8
          Issue’s Table of Contents

          Publisher

          John Wiley & Sons, Inc.

          United States

          Publication History

          Published: 05 August 2021

          Author Tags

          1. adaptive control
          2. backstepping
          3. event‐triggered control
          4. hyperbolic PDEs
          5. least‐squares identifier.

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • 0
            Total Citations
          • 0
            Total Downloads
          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 11 Dec 2024

          Other Metrics

          Citations

          View Options

          View options

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media