[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Design scheme for broadband Doherty power amplifier using broadband load combiner

Published: 01 October 2015 Publication History

Abstract

This article proposes a design strategy for broadband Doherty power amplifier PA using broadband load combiner. The bandwidth of the Doherty PA based on the proposed combiner using packaged transistor is about 2.5 times the bandwidth of conventional Doherty PA using a quarter-wave transformer. An easy to implement analytical design methodology has been presented for the proposed load-combiner while describing the bandwidth enhancement strategy. The design methodology is validated with the design of a broadband Doherty PA based on CREE 10 W packaged GaN high electron mobility transistor devices using the proposed load combiner. Measurement results show more than 45% drain efficiency at 6 dB output power back-off OPBO over 400 MHz frequency range, centred around 1.95 GHz. The peak drain efficiency at saturation is better than 60% over this band of operation. At 6 dB OPBO, the maximum improvement of 18.5% in drain efficiency is achieved as compared to the balanced mode PA. Measurement with single carrier wideband code division multiple access modulated signal shows the average drain efficiency of more than 44% at 36.6 dBm average output power at center frequency of operation. The adjacent channel power ratio is better than -45 dBc after applying digital predistortion. The circuit is realized with microstrip technology, which can be easily fabricated using conventional printed circuit processes. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:655-674, 2015.

References

[1]
W.H.Doherty, A new high efficiency power amplifier for modulated waves, Proc IRE Volume 24 1936, pp.1163-1182.
[2]
F.H.Raab, Efficiency of Doherty power-amplifier systems, IEEE Trans Broadcast BC -Volume 33 1987, pp.42-50.
[3]
B.Kim, J.Kim, I.Kim, and J.Cha, The Doherty power amplifier, IEEE Microwave Mag Volume 7 2006, pp.42-50.
[4]
R.Sweeney, Practical Magic, IEEE Microwave Mag Volume 9 2008, pp.73-82.
[5]
B.Kim, I.Kim, and J.Moon, Advanced Doherty architecture, IEEE Microwave Mag Volume 11 2010, pp.72-86.
[6]
J.Kim, B.Fehri, S.Boumaiza, and J.Wood, Power efficiency and linearity enhancement using optimized asymmetrical Doherty power amplifiers, IEEE Trans Microwave Theory Tech Volume 59 2011, pp.425-434.
[7]
J.Y.Lee, J.Y.Kim, J.H.Kim, K.J.Cho, and S.P.Stapleton, A high power asymmetric Doherty amplifier with improved linear dynamic range, IEEE MTT-S IMS International Microwave Symposium Digest, San Francisco, CA, June 2006, pp. pp.1348-1351.
[8]
M.Iwamoto, A.Williams, P. F.Chen, A. G.Metzger, L.E.Larson, and P. M.Asbeck, An extended Doherty amplifier with high efficiency over a wide power range, IEEE Trans Microwave Theory Tech Volume 49 2001, pp.2472-2479.
[9]
S.Bousnina, Maximizing efficiency and linearity, IEEE Microwave Mag Volume 10 2009, pp.99-107.
[10]
R.Darraji and F.M.Ghannouchi, Digital Doherty amplifier with enhanced efficiency and extended range, IEEE Trans Microwave Theory Tech Volume 59 2011, pp.2898-2909.
[11]
X.A.Nghiem, J.Guan, T.Hone, and R.Negra, Design of concurrent multiband Doherty power, IEEE Trans Microwave Theory Tech Volume 61 2013, pp.4559-4568.
[12]
K.Rawat, M.S.Hashmi, and F.M.Ghannouchi, Double the band and optimize, IEEE Microwave Mag Volume 13 2012, pp. pp.69-82.
[13]
W.Chen, S.A.Bassam, X.Li, Y.Liu, K.Rawat, M.Helaoui, F.M.Ghannouchi, and Z.Feng, Design and linearization of concurrent dual-band Doherty power amplifier with frequency-dependent power ranges, IEEE Trans Microwave Theory Tech Volume 59 2011, pp.2537-2546.
[14]
P.Saad, P.Colantonio, L.Piazzon, F.Giannini, K.Andersson, and C.Fager, Design of a concurrent dual-band 1.8-2.4-GHz GaN-HEMT Doherty power amplifier, IEEE Trans Microwave Theory Tech Volume 60 2012, pp.1840-1849.
[15]
D.Kang, D.Kim, Y.Cho, B.Park, J.Kim, and B.Kim, Design of bandwidth-enhanced Doherty power amplifiers for handset applications, IEEE Trans Microwave Theory Tech Volume 59 2011, pp.3473-3483.
[16]
M.Akbarpour, M.Helaoui, and F.M.Ghannouchi, A transformer-less load-modulated TLLM architecture for efficient wideband power amplifiers, IEEE Trans Microwave Theory Tech Volume 60 2012, pp.2863-2874.
[17]
G.Sun and R. H.Jansen, Broadband Doherty power amplifier via real frequency technique, IEEE Trans Microwave Theory Tech Volume 60 2012, pp.99-111.
[18]
D.Y.T.Wu and S.Boumaiza, A modified Doherty configuration for broadband amplification using symmetrical devices, IEEE Trans Microwave Theory Tech Volume 60 2012, pp.3201-3213.
[19]
D.Gustafsson, C.M.Andersson, and C.Fager, A modified Doherty power amplifier with extended bandwidth and reconfigurable efficiency, IEEE Trans Microwave Theory Tech Volume 60 2013, pp.533-542.
[20]
C.M.Andersson, D.Gustafsson, J.C.Cahuana, R.Hellberg, and C.Fager, 1-3-GHz digitally controlled dual-RF input power-amplifier design based on a Doherty-outphasing continuum analysis, IEEE Trans Microwave Theory Tech Volume 61 2013, pp.3743-3752.
[21]
R.Giofré, L.Piazzon, P.Colantonio, and F.Giannini, A Doherty architecture with high feasibility and defined bandwidth behavior, IEEE Trans Microwave Theory Tech Volume 61 2013, pp.3308-3317.
[22]
L.Piazzon, R.Giofrè, P.Colontonio, and F.Giannini, A wideband Doherty archietecture with 36% of fractional bandwidth, IEEE Microwave Wireless Compon Lett Volume 11 2013, pp.626-628.
[23]
L.Piazzon, R.Giofrè, P.Colontonio, and F.Giannini, A method for designing broadband Doherty power amplifiers, Prog Electromagn Res Volume 145 2014, pp.319-331.
[24]
R.Giofrè, L.Piazzon, P.Colontonio, and F.Giannini, A closed form design technique for ultra-wideband Doherty power amplifiers, IEEE Trans Microwave Theory Tech Volume 62 2014, pp.3414-3424.
[25]
D.Gustafsson, J.C.Cahuana, D.Kuylenstierna, I.Angelov, and C.Fager, A GaN MMIC modified Doherty PA with large bandwidth and reconfigurable efficiency, IEEE Trans Microwave Theory Tech Volume 62 2014, pp.3006-3016.
[26]
H.R.Ahn, Asymmetric passive components in microwave integrated circuits, 1st ed. Wiley, New Jersey, 2006.
[27]
B.Gowrish, K.Rawat, A.Basu, and S.K.Koul, Broadband matching network using band-pass filter with device parasitic absorption, IEEE ARFTG 82nd Microwave Measurement Conference, Columbus, OH, 2013, pp. pp.1-4.
[28]
A.Grebennikov, RF and microwave transmitter design, 1st ed., Wiley, New Jersey, 2011.

Cited By

View all
  • (2018)Double octave L- and S-band power amplifier utilizing broadside coupled impedance transformersInternational Journal of RF and Microwave Computer-Aided Engineering10.1002/mmce.2095426:3(209-216)Online publication date: 24-Dec-2018

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of RF and Microwave Computer-Aided Engineering
International Journal of RF and Microwave Computer-Aided Engineering  Volume 25, Issue 8
October 2015
92 pages

Publisher

John Wiley and Sons Ltd.

United Kingdom

Publication History

Published: 01 October 2015

Author Tags

  1. Doherty power amplifier
  2. broadband
  3. load combiner
  4. load modulation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Double octave L- and S-band power amplifier utilizing broadside coupled impedance transformersInternational Journal of RF and Microwave Computer-Aided Engineering10.1002/mmce.2095426:3(209-216)Online publication date: 24-Dec-2018

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media