[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-642-37444-9_51guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

An adaptation framework for head-pose classification in dynamic multi-view scenarios

Published: 05 November 2012 Publication History

Abstract

Multi-view head-pose estimation in low-resolution, dynamic scenes is difficult due to blurred facial appearance and perspective changes as targets move around freely in the environment. Under these conditions, acquiring sufficient training examples to learn the dynamic relationship between position, face appearance and head-pose can be very expensive. Instead, a transfer learning approach is proposed in this work. Upon learning a weighted-distance function from many examples where the target position is fixed, we adapt these weights to the scenario where target positions are varying. The adaptation framework incorporates reliability of the different face regions for pose estimation under positional variation, by transforming the target appearance to a canonical appearance corresponding to a reference scene location. Experimental results confirm effectiveness of the proposed approach, which outperforms state-of-the-art by 9.5% under relevant conditions. To aid further research on this topic, we also make DPOSE- a dynamic, multi-view head-pose dataset with ground-truth publicly available with this paper.

References

[1]
Murphy-Chutorian, E., Trivedi, M. M.: Head pose estimation in computer vision: A survey. IEEE PAMI 31, 607-626 (2009)
[2]
Tosato, D., Farenzena, M., Cristani, M., Spera, M., Murino, V.: Multi-class Classification on Riemannian Manifolds for Video Surveillance. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 378-391. Springer, Heidelberg (2010)
[3]
Zabulis, X., Sarmis, T., Argyros, A. A.: 3d head pose estimation from multiple distant views. In: BMVC (2009)
[4]
Orozco, J., Gong, S., Xiang, T.: Head pose classification in crowded scenes. In: BMVC, pp. 1-11 (2009)
[5]
Benfold, B., Reid, I.: Unsupervised learning of a scene-specific coarse gaze estimator. In: ICCV (2012)
[6]
Chen, C., Odobez, J. M.: We are not contortionists: coupled adaptive learning for head and body orientation estimation in surveillance video. In: CVPR (2012)
[7]
Voit, M., Stiefelhagen, R.: A system for probabilistic joint 3d head tracking and pose estimation in low-resolution, multi-view environments. In: ICVS, pp. 415-424 (2009)
[8]
Stiefelhagen, R., Bowers, R., Fiscus, J. G. (eds.): RT 2007 and CLEAR 2007. LNCS, vol. 4625. Springer, Heidelberg (2008)
[9]
Pan, S. J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345-1359 (2010)
[10]
Dai, W., Yang, Q., Xue, G. R., Yu, Y.: Boosting for transfer learning. In: ICML, pp. 193-200 (2007)
[11]
HOSDB: Imagery library for intelligent detection systems (i-lids). IEEE Crime and Security (2006)
[12]
Muñoz-Salinas, R., Yeguas-Bolivar, E., Saffiotti, A., Carnicer, R. M.: Multicamera head pose estimation. Mach. Vis. Appl. 23, 479-490 (2012)
[13]
Yang, W., Wang, Y., Mori, G.: Efficient Human Action Detection Using a Transferable Distance Function. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part II. LNCS, vol. 5995, pp. 417-426. Springer, Heidelberg (2010)
[14]
Lim, J. J., Salakhutdinov, R., Torralba, A.: Transfer learning by borrowing examples for multiclass object detection. In: NIPS, pp. 118-126 (2011)
[15]
Kulis, B., Saenko, K., Darrell, T.: What you saw is not what you get: Domain adaptation using asymmetric kernel transforms. In: CVPR (2011)
[16]
Zhang, Y., Yeung, D.Y.: A convex formulation for learning task relationships in multi-task learning. In: UAI, pp. 733-742 (2010)
[17]
Zhang, Y., Yeung, D.Y.: Transfer metric learning by learning task relationships. In: KDD (2010)
[18]
Wang, X., Huang, X., Gao, J., Yang, R.: Illumination and Person-Insensitive Head Pose Estimation Using Distance Metric Learning. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 624-637. Springer, Heidelberg (2008)
[19]
Ricci, E., Odobez, J. M.: Learning large margin likelihoods for realtime head pose tracking. In: ICIP (2009)
[20]
Lanz, O.: Approximate bayesian multibody tracking. IEEE PAMI (2006)
[21]
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886-893 (2005)
[22]
Wang, X., Han, T.X., Yan, S.: An hog-lbp human detector with partial occlusion handling. In: ICCV, pp. 32-39 (2009)

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
ACCV'12: Proceedings of the 11th Asian conference on Computer Vision - Volume Part II
November 2012
810 pages
ISBN:9783642374432
  • Editors:
  • Kyoung Mu Lee,
  • Yasuyuki Matsushita,
  • James M. Rehg,
  • Zhanyi Hu

Sponsors

  • DCC: Daejeon Convention Center
  • DMCITY: Daejeon Metropolitan City
  • KTO: Korea Tourism Organization
  • Kaist
  • DIME: Daejeon International Marketing Enterprise

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 05 November 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media