[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-642-37198-1_14guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

From sequential to parallel local search for SAT

Published: 03 April 2013 Publication History

Abstract

In the domain of propositional Satisfiability Problem (SAT), parallel portfolio-based algorithms have become a standard methodology for both complete and incomplete solvers. In this methodology several algorithms explore the search space in parallel, either independently or cooperatively with some communication between the solvers. We conducted a study of the scalability of several SAT solvers in different application domains (crafted, verification, quasigroups and random instances) when drastically increasing the number of cores in the portfolio, up to 512 cores. Our experiments show that on different problem families the behaviors of different solvers vary greatly. We present an empirical study that suggests that the best sequential solver is not necessary the one with the overall best parallel speedup.

References

[1]
Cook, S. A.: The Complexity of Theorem-Proving Procedures. In: Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151-158. ACM (1971)
[2]
Chrabakh, W., Wolski, R.: GridSAT: A System for Solving Satisfiability Problems Using a Computational Grid. Parallel Computing 32(9), 660-687 (2006)
[3]
Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: A Parallel SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation, JSAT 6(4), 245-262 (2009)
[4]
Arbelaez, A., Hamadi, Y.: Improving Parallel Local Search for SAT. In: Coello Coello, C. A. (ed.) LION 2011. LNCS, vol. 6683, pp. 46-60. Springer, Heidelberg (2011)
[5]
Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Morgan Kaufmann Publishers Inc., San Francisco (2004)
[6]
Selman, B., Kautz, H. A., Cohen, B.: Noise Strategies for Improving Local Search. In: AAAI 1994, vol. 1, pp. 337-343 (July 1994)
[7]
McAllester, D. A., Selman, B., Kautz, H. A.: Evidence for Invariants in Local Search. In: AAAI 1997, pp. 321-326 (1997)
[8]
Thornton, J., Pham, D. N., Bain, S., Ferreira Jr., V.: Additive versus Multiplicative Clause Weighting for SAT. In: AAAI 2004, pp. 191-196 (July 2004)
[9]
Prestwich, S. D.: Random Walk with Continuously Smoothed Variable Weights. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 203-215. Springer, Heidelberg (2005)
[10]
Li, C.-M., Huang, W. Q.: Diversification and Determinism in Local Search for Satisfiability. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158-172. Springer, Heidelberg (2005)
[11]
Balint, A., Fröhlich, A.: Improving Stochastic Local Search for SAT with a New Probability Distribution. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 10-15. Springer, Heidelberg (2010)
[12]
Shylo, O. V., Middelkoop, T., Pardalos, P. M.: Restart Strategies in Optimization: Parallel and Serial Cases. Parallel Computing 37(1), 60-68 (2011)
[13]
Pham, D. N., Gretton, C.: gNovelty+. In: Solver Description, SAT Competition 2007 (2007)
[14]
Roli, A.: Criticality and Parallelism in Structured SAT Instances. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 714-719. Springer, Heidelberg (2002)
[15]
Kroc, L., Sabharwal, A., Gomes, C. P., Selman, B.: Integrating Systematic and Local Search Paradigms: A New Strategy for MaxSAT. In: IJCAI 2009, pp. 544-551 (July 2009)
[16]
Arbeleaz, A., Codognet, P.: Massivelly Parallel Local Search for SAT. In: ICTAI 2012, Athens, Greece, pp. 57-64. IEEE Computer Society (November 2012)
[17]
Martins, R., Manquinho, V., Lynce, I.: An Overview of Parallel SAT Solving. Constraints 17, 304-347 (2012)
[18]
Tompkins, D. A. D., Hoos, H. H.:UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT and MAX-SAT. In: Hoos, H. H., Mitchell, D. G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306-320. Springer, Heidelberg (2005)
[19]
Achlioptas, D., Gomes, C. P., Kautz, H. A., Selman, B.: Generating satisfiable problem instances. In: AAAI 2000, pp. 256-261 (July 2000)
[20]
Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168-176. Springer, Heidelberg (2004)
[21]
Tompkins, D. A. D., Balint, A., Hoos, H. H.: Captain Jack: New Variable Selection Heuristics in Local Search for SAT. In: Sakallah, K. A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 302-316. Springer, Heidelberg (2011)
[22]
Gent, I. P., Walsh, T.: The SAT Phase Transition. In: ECAI 1994, pp. 105-109 (August 1994)

Cited By

View all
  • (2020)Cooperative Parallel SAT Local Search with Path RelinkingEvolutionary Computation in Combinatorial Optimization10.1007/978-3-030-43680-3_6(83-98)Online publication date: 15-Apr-2020

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
EvoCOP'13: Proceedings of the 13th European conference on Evolutionary Computation in Combinatorial Optimization
April 2013
273 pages
ISBN:9783642371974
  • Editors:
  • Martin Middendorf,
  • Christian Blum

Sponsors

  • VIENUT: Vienna University of Technology
  • Edinburgh Napier University, UK: Edinburgh Napier University, UK

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 03 April 2013

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2020)Cooperative Parallel SAT Local Search with Path RelinkingEvolutionary Computation in Combinatorial Optimization10.1007/978-3-030-43680-3_6(83-98)Online publication date: 15-Apr-2020

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media