[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-642-34002-4_2guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Spatial keyword querying

Published: 15 October 2012 Publication History

Abstract

The web is increasingly being used by mobile users. In addition, it is increasingly becoming possible to accurately geo-position mobile users and web content. This development gives prominence to spatial web data management. Specifically, a spatial keyword query takes a user location and user-supplied keywords as arguments and returns web objects that are spatially and textually relevant to these arguments. This paper reviews recent results by the authors that aim to achieve spatial keyword querying functionality that is easy to use, relevant to users, and can be supported efficiently. The paper covers different kinds of functionality as well as the ideas underlying their definition.

References

[1]
Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition 17(2), 51-57 (1984).
[2]
Cao, X., Cong, G., Jensen, C.S.: Mining significant semantic locations from GPS data. PVLDB 3(1), 1009-1020 (2010).
[3]
Cao, X., Cong, G., Jensen, C.S.: Retrieving top-k prestige-based relevant spatial web objects. PVLDB 3(1), 373-384 (2010).
[4]
Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD, pp. 373-384 (2011).
[5]
Chen, Y.-Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web search engines. In: SIGMOD, pp. 277-288 (2006).
[6]
Christoforaki, M., He, J., Dimopoulos, C., Markowetz, A., Suel, T.: Text vs. space: efficient geo-search query processing. In: CIKM, pp. 423-432 (2011).
[7]
Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. PVLDB 2(1), 337-348 (2009).
[8]
Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: ICDE, pp. 656-665 (2008).
[9]
Google: Google latitude API (2012), http://developers.google.com/latitude.
[10]
Google: Google Places. Stats&Facts (2012), sites.google.com/a/pressatgoogle. com/googleplaces/metrics.
[11]
Hage, C., Jensen, C.S., Pedersen, T.B., Speicys, L., Timko, I.: Integrated data management for mobile services in the real world. In: VLDB, pp. 1019-1030 (2003).
[12]
IDC: Smartphone statistics and market share (2012), www.email-marketingreports. com/wireless-mobile/smartphone-statistics.htm.
[13]
Jensen, C.S., Lu, H., Yang, B.: Graph model based indoor tracking. In: MDM, pp. 122-131 (2009).
[14]
Li, Z., Lee, K.C.K., Zheng, B., Lee, W.-C., Lee, D.L., Wang, X.: IR-tree: an efficient index for geographic document search. TKDE 23(4), 585-599 (2011).
[15]
Lu, H., Cao, X., Jensen, C.S.: A foundation for efficient indoor distance-aware query processing. In: ICDE, pp. 438-449 (2012).
[16]
Lu, J., Lu, Y., Cong, G.: Reverse spatial and textual k nearest neighbor search. In: SIGMOD, pp. 349-360 (2011).
[17]
Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: SIGIR, pp. 275-281 (1998).
[18]
Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørvåg, K.: Efficient Processing of Top-k Spatial Keyword Queries. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 205-222. Springer, Heidelberg (2011).
[19]
Speicys, L., Jensen, C.S.: Enabling location-based services--multi-graph representation of transportation networks. Geoinformatica 12(2), 219-253 (2008).
[20]
Statistic Brain: Google Annual Search Statistics (2012), http://www.statisticbrain.com/google-searches/.
[21]
Search Engine Land: Microsoft: 53 percent of mobile searches have local intent (2012), searchengineland.com/microsoft-53-percent-of-mobile-searcheshave-local-intent-55556.
[22]
Venetis, P., Gonzalez, H., Jensen, C.S., Halevy, A.: Hyper-local, directions-based ranking of places. PVLDB 4(5), 290-301 (2011).
[23]
Wu, D., Yiu, M.L., Jensen, C.S., Cong, G.: Efficient continuously moving top-k spatial keyword query processing. In: ICDE, pp. 541-552 (2011).
[24]
Zeiler, M.: Modeling our World--The ESRI Guide to Geodatabase Design. ESRI Press (1999).
[25]
Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K.H., Kitsuregawa, M.: Keyword search in spatial databases: Towards searching by document. In: ICDE, pp. 688- 699 (2009).
[26]
Zhang, D., Ooi, B.C., Tung, A.K.H.: Locating mapped resources in web 2.0. In: ICDE, pp. 521-532 (2010).
[27]
Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.-Y.: Hybrid index structures for location-based web search. In: CIKM, pp. 155-162 (2005).
[28]
Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38(2) (2006).

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
ER'12: Proceedings of the 31st international conference on Conceptual Modeling
October 2012
591 pages
ISBN:9783642340017
  • Editors:
  • Paolo Atzeni,
  • David Cheung,
  • Sudha Ram

Sponsors

  • Springer
  • Universitàdegli Studi Di Brescia: Universitàdegli Studi Di Brescia
  • Universita della Calabria, Rende(CS), Italy
  • Università degli Studi di Milano: Università degli Studi di Milano
  • HP: HP

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 15 October 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Spatio-Textual Group Skyline QueryDatabase Systems for Advanced Applications. DASFAA 2023 International Workshops10.1007/978-3-031-35415-1_3(34-50)Online publication date: 17-Apr-2023
  • (2020)Indexing of real time geospatial data by IoT enabled devicesJournal of Ambient Intelligence and Smart Environments10.3233/AIS-20056512:4(281-312)Online publication date: 1-Jan-2020
  • (2020)Topic-based community search over spatial-social networksProceedings of the VLDB Endowment10.14778/3407790.340781213:12(2104-2117)Online publication date: 14-Sep-2020
  • (2019)Influence constraint based Top-k spatial keyword preference queryProceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing10.1145/3371425.3371492(1-6)Online publication date: 19-Dec-2019
  • (2019)IG-TreeWorld Wide Web10.1007/s11280-018-0643-522:4(1359-1399)Online publication date: 1-Jul-2019
  • (2018)Continuous Spatial Query ProcessingACM Computing Surveys10.1145/319383551:3(1-39)Online publication date: 23-May-2018
  • (2017)Query Processing Techniques for Big Spatial-Keyword DataProceedings of the 2017 ACM International Conference on Management of Data10.1145/3035918.3054773(1777-1782)Online publication date: 9-May-2017
  • (2017)A K-partitioning algorithm for clustering large-scale spatio-textual dataInformation Systems10.1016/j.is.2016.08.00364:C(1-11)Online publication date: 1-Mar-2017
  • (2017)Monochromatic and bichromatic ranked reverse boolean spatial keyword nearest neighbors searchWorld Wide Web10.1007/s11280-016-0399-820:1(39-59)Online publication date: 1-Jan-2017
  • (2017)A survey of query result diversificationKnowledge and Information Systems10.1007/s10115-016-0990-451:1(1-36)Online publication date: 1-Apr-2017
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media