[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-642-33783-3_57guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Connecting missing links: object discovery from sparse observations using 5 million product images

Published: 07 October 2012 Publication History

Abstract

Object discovery algorithms group together image regions that originate from the same object. This process is effective when the input collection of images contains a large number of densely sampled views of each object, thereby creating strong connections between nearby views. However, existing approaches are less effective when the input data only provide sparse coverage of object views.
We propose an approach for object discovery that addresses this problem. We collect a database of about 5 million product images that capture 1.2 million objects from multiple views. We represent each region in the input image by a "bag" of database object regions. We group input regions together if they share similar "bags of regions." Our approach can correctly discover links between regions of the same object even if they are captured from dramatically different viewpoints. With the help from these added links, our proposed approach can robustly discover object instances even with sparse coverage of the viewpoints.

References

[1]
Tuytelaars, T., Lampert, C.H., Blaschko, M.B., Buntine, W.: Unsupervised object discovery: A comparison. IJCV (2009).
[2]
Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering object categories in image collections. In: ICCV (2005).
[3]
Russell, B.C., Efros, A.A., Sivic, J., Freeman, W.T., Zisserman, A.: Using multiple segmentations to discover objects and their extent in image collections. In: CVPR (2006).
[4]
Quack, T., Ferrari, V., Leibe, B., Van Gool, L.: Efficient mining of frequent and distinctive feature configurations. In: ICCV 2007 (2007).
[5]
Kim, G., Faloutsos, C., Hebert, M.: Unsupervised modeling of object categories using link analysis techniques. In: CVPR (2008).
[6]
Cho, M., Shin, Y.M., Lee, K.M.: Unsupervised detection and segmentation of identical objects. In: CVPR (2010).
[7]
Lee, Y.J., Grauman, K.: Object-graphs for context-aware category discovery. In: CVPR (2010).
[8]
Payet, N., Todorovic, S.: From a Set of Shapes to Object Discovery. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 57-70. Springer, Heidelberg (2010).
[9]
Kang, H., Hebert, M., Kanade, T.: Discovering object instances from scenes of daily living. In: ICCV (2011).
[10]
Huffman, D.A.: Impossible Objects as Nonsense Sentences. Machine Intelligence 6, 295-323 (1971).
[11]
Li, L.J., Su, H., Xing, E.P., Fei-Fei, L.: Object bank: A high-level image representation for scene classification & semantic feature sparsification. In: NIPS (2010).
[12]
Lim, J., Salakhutdinov, R., Torralba, A.: Transfer learning by borrowing examples. In: NIPS (2011).
[13]
Schroff, F., Treibitz, T., Kriegman, D., Belongie, S.: Pose, illumination and expression invariant pairwise face-similarity measure via doppelgänger list comparison. In: ICCV (2011).
[14]
Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR 2011 (2011).
[15]
Ke, Y., Tang, X., Jing, F.: The design of high-level features for photo quality assessment. In: CVPR (2006).
[16]
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV (2004).
[17]
Mishra, A., Aloimonos, Y.: Active segmentation with fixation. In: ICCV (2009).
[18]
Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An efficiently computable metric for comparing polygonal shapes. PAMI (1991).
[19]
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005).
[20]
Hays, J., Efros, A.A.: Scene completion using millions of photographs. In: SIGGRAPH (2007).
[21]
Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set for nonparametric object and scene recognition. PAMI (2008).
[22]
Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: ICRA (2011).
[23]
Brown, M., Lowe, D.: Recognising panoramas. In: Proceedings of the 9th International Conference on Computer Vision, Nice, vol. 2, pp. 1218-1225 (2003).

Cited By

View all
  • (2014)Circle & SearchACM Transactions on Multimedia Computing, Communications, and Applications10.1145/263216511:1(1-21)Online publication date: 4-Sep-2014
  • (2014)Visualizing brand associations from web community photosProceedings of the 7th ACM international conference on Web search and data mining10.1145/2556195.2556212(623-632)Online publication date: 24-Feb-2014

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
ECCV'12: Proceedings of the 12th European conference on Computer Vision - Volume Part VI
October 2012
892 pages
ISBN:9783642337826
  • Editors:
  • Andrew Fitzgibbon,
  • Svetlana Lazebnik,
  • Pietro Perona,
  • Yoichi Sato,
  • Cordelia Schmid

Sponsors

  • Adobe
  • Google Inc.
  • IBMR: IBM Research
  • NVIDIA
  • Microsoft Reasearch: Microsoft Reasearch

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 07 October 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2014)Circle & SearchACM Transactions on Multimedia Computing, Communications, and Applications10.1145/263216511:1(1-21)Online publication date: 4-Sep-2014
  • (2014)Visualizing brand associations from web community photosProceedings of the 7th ACM international conference on Web search and data mining10.1145/2556195.2556212(623-632)Online publication date: 24-Feb-2014

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media