[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-642-33765-9_8guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Background subtraction with dirichlet processes

Published: 07 October 2012 Publication History

Abstract

Background subtraction is an important first step for video analysis, where it is used to discover the objects of interest for further processing. Such an algorithm often consists of a background model and a regularisation scheme. The background model determines a per-pixel measure of if a pixel belongs to the background or the foreground, whilst the regularisation brings in information from adjacent pixels. A new method is presented that uses a Dirichlet process Gaussian mixture model to estimate a per-pixel background distribution, which is followed by probabilistic regularisation. Key advantages include inferring the per-pixel mode count, such that it accurately models dynamic backgrounds, and that it updates its model continuously in a principled way.

References

[1]
Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and practise of background maintenance. In: ICCV, pp. 255-261 (1999).
[2]
Brutzer, S., Hferlin, B., Heidemann, G.: Evaluation of background subtraction techniques for video surveillance. In: CVPR (2011).
[3]
Cheung, S.C.S., Kamath, C.: Robust techniques for background subtraction in urban traffic video. In: VCIP, vol. 5308, pp. 881-892 (2004).
[4]
Karaman, M., Goldmann, L., Yu, D., Sikora, T.: Comparison of static background segmentation methods. In: VCIP, vol. 5960, pp. 2140-2151 (2005).
[5]
Herrero, S., Bescós, J.: Background Subtraction Techniques: Systematic Evaluation and Comparative Analysis. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 33-42. Springer, Heidelberg (2009).
[6]
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: CVPR, vol. 2, pp. 637-663 (1999).
[7]
Zivkovica, Z., Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 773-780 (2006).
[8]
Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Frame-rate Workshop, pp. 751-767 (2000).
[9]
Sheikh, Y., Shah, M.: Bayesian modeling of dynamic scenes for object detection. PAMI 27(11), 1778-1792 (2005).
[10]
Barnich, O., Droogenbroeck, M.V.: Vibe: A powerful random technique to estimate the background in video sequences. In: Acoustics, Speech and Signal Processing, pp. 945-948 (2009).
[11]
Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Foreground object detection from videos containing complex background. In: Proc. Multimedia, pp. 2-10 (2003).
[12]
Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Tran. IP 17(7), 1168-1177 (2008).
[13]
Kato, J., Watanabe, T., Joga, S., Rittscher, J., Blake, A.: An hmm-based segmentation method for traffic monitoring movies. PAMI 24(9), 1291-1296 (2002).
[14]
Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. J. American Statistical Association 90(430), 577-588 (1995).
[15]
Teh, Y.W., Jordan, M.I.: Hierarchical Bayesian Nonparametric Models with Applications. In: Bayesian Nonparametrics. Cambridge University Press (2010).
[16]
He, Y., Wang, D., Zhu, M.: Background subtraction based on nonparametric bayesian estimation. In: Int. Conf. Digital Image Processing (2011).
[17]
Lee, D.S.: Effective gaussian mixture learning for video background subtraction. PAMI 27(5), 827-832 (2005).
[18]
Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Background modeling and subtraction by codebook construction. In: ICIP, vol. 5, pp. 3061-3064 (2004).
[19]
Migdal, J., Grimson, W.E.L.: Background subtraction using markov thresholds. In: Workshop on Motion and Video Computing, pp. 58-65 (2005).
[20]
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. In: CVPR, vol. 70(1), pp. 41-54 (2004).
[21]
Cohen, S.: Background estimation as a labeling problem. In: ICCV, pp. 1034-1041 (2005).
[22]
Blei, D.M., Jordan, M.I.: Variational inference for dirichlet process mixtures. Bayesian Analysis, 121-144 (2005).
[23]
Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Chapman & Hall (2004).
[24]
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23, 1222-1239 (2001).
[25]
Loy, C.C., Xiang, T., Gong, S.: Time-delayed correlation analysis for multicamera activity understanding. IJCV 90(1), 106-129 (2010).
[26]
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. PAMI 24(5), 603-619 (2002).
[27]
Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A system for video surveillance and monitoring. Technical report, CMU (2000).
[28]
Culibrk, D., Marques, O., Socek, D., Kalva, H., Furht, B.: Neural network approach to background modeling for video object segmentation. Neural Networks 18(6), 1614-1627 (2007).
[29]
Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Tran. IP 13(11), 1459-1472 (2004).
[30]
Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-time tracking of the human body. PAMI 19(7), 780-785 (1997).

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
ECCV'12: Proceedings of the 12th European conference on Computer Vision - Volume Part IV
October 2012
884 pages
ISBN:9783642337642
  • Editors:
  • Andrew Fitzgibbon,
  • Svetlana Lazebnik,
  • Pietro Perona,
  • Yoichi Sato,
  • Cordelia Schmid

Sponsors

  • Adobe
  • TOYOTA: TOYOTA
  • Google Inc.
  • IBMR: IBM Research
  • Microsoft Reasearch: Microsoft Reasearch

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 07 October 2012

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 31 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2017)Deep Learning-Based Improved Object Recognition in WarehousesImage and Video Technology10.1007/978-3-319-75786-5_29(350-365)Online publication date: 20-Nov-2017
  • (2016)Efficient Generalized Fused Lasso and Its ApplicationsACM Transactions on Intelligent Systems and Technology10.1145/28474217:4(1-22)Online publication date: 5-May-2016
  • (2016)Dynamic background estimation and complementary learning for pixel-wise foreground/background segmentationPattern Recognition10.1016/j.patcog.2016.01.03159:C(112-125)Online publication date: 1-Nov-2016
  • (2015)Visual tracking based on improved foreground detection and perceptual hashingNeurocomputing10.1016/j.neucom.2014.09.060152:C(413-428)Online publication date: 25-Mar-2015
  • (2014)Nonparametric clustering with distance dependent hierarchiesProceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence10.5555/3020751.3020779(260-269)Online publication date: 23-Jul-2014
  • (2014)A background modeling and foreground segmentation approach based on the feedback of moving objects in traffic surveillance systemsNeurocomputing10.1016/j.neucom.2013.11.034133(32-45)Online publication date: 1-Jun-2014

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media