[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-642-30217-6_1guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Time-Evolving relational classification and ensemble methods

Published: 29 May 2012 Publication History

Abstract

Relational networks often evolve over time by the addition, deletion, and changing of links, nodes, and attributes. However, accurately incorporating the full range of temporal dependencies into relational learning algorithms remains a challenge. We propose a novel framework for discovering <em>temporal-relational representations</em> for classification. The framework considers transformations over <em>all</em> the evolving relational components (attributes, edges, and nodes) in order to accurately incorporate temporal dependencies into relational models. Additionally, we propose <em>temporal ensemble methods</em> and demonstrate their effectiveness against traditional and relational ensembles on two real-world datasets. In all cases, the proposed temporal-relational models outperform competing models that ignore temporal information.

References

[1]
Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble methods for evolving data streams. In: SIGKDD, pp. 139-148 (2009)
[2]
Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hyperlinks. In: SIGMOD, pp. 307-318 (1998)
[3]
Cortes, C., Pregibon, D., Volinsky, C.: Communities of Interest. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D. J. (eds.) IDA 2001. LNCS, vol. 2189, pp. 105-114. Springer, Heidelberg (2001)
[4]
Dietterich, T. G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1-15. Springer, Heidelberg (2000)
[5]
Domingos, P., Pazzani, M.: On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning 29, 103-130 (1997)
[6]
Domingos, P., Richardson, M.: Mining the network value of customers. In: SIGKDD, pp. 57-66 (2001)
[7]
Dunlavy, D., Kolda, T., Acar, E.: Temporal link prediction using matrix and tensor factorizations. TKDD 5(2), 10 (2011)
[8]
Eldardiry, H., Neville, J.: Across-model collective ensemble classification. AAAI (2011)
[9]
Günes, I., Ç ataltepe, Z., Öǧüdücü, S. G.: GA-TVRC: A Novel Relational Time Varying Classifier to Extract Temporal Information Using Genetic Algorithms. In: Perner, P. (ed.) MLDM 2011. LNCS, vol. 6871, pp. 568-583. Springer, Heidelberg (2011)
[10]
Lahiri, M., Berger-Wolf, T.: Structure prediction in temporal networks using frequent subgraphs. In: CIDM, pp. 35-42 (2007)
[11]
McGovern, A., Collier, N., Matthew Gagne, I., Brown, D., Rodger, A.: Spatiotemporal Relational Probability Trees: An Introduction. In: ICDM, pp. 935-940 (2008)
[12]
Neville, J., Jensen, D., Friedland, L., Hay, M.: Learning relational probability trees. In: SIGKDD, pp. 625-630 (2003)
[13]
Neville, J., Jensen, D., Gallagher, B.: Simple estimators for relational Bayesian classifers. In: ICML, pp. 609-612 (2003)
[14]
Preisach, C., Schmidt-Thieme, L.: Relational ensemble classification. In: ICDM, pp. 499-509. IEEE (2006)
[15]
Preisach, C., Schmidt-Thieme, L.: Ensembles of relational classifiers. KIS 14(3), 249-272 (2008)
[16]
Rossi, R., Neville, J.: Modeling the evolution of discussion topics and communication to improve relational classification. In: SOMA-KDD, pp. 89-97 (2010)
[17]
Rossi, R. A., Neville, J.: Representations and ensemble methods for dynamic relational classification. CoRR abs/1111.5312 (2011)
[18]
Sharan, U., Neville, J.: Temporal-relational classifiers for prediction in evolving domains. In: ICML (2008)

Cited By

View all
  • (2022)On Generalizing Static Node Embedding to Dynamic SettingsProceedings of the Fifteenth ACM International Conference on Web Search and Data Mining10.1145/3488560.3498428(410-420)Online publication date: 11-Feb-2022
  • (2021)Online Sampling of Temporal NetworksACM Transactions on Knowledge Discovery from Data10.1145/344220215:4(1-27)Online publication date: 18-Apr-2021
  • (2019)Exploiting interaction links for node classification with deep graph neural networksProceedings of the 28th International Joint Conference on Artificial Intelligence10.5555/3367471.3367489(3223-3230)Online publication date: 10-Aug-2019
  • Show More Cited By
  1. Time-Evolving relational classification and ensemble methods

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    PAKDD'12: Proceedings of the 16th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining - Volume Part I
    May 2012
    616 pages
    ISBN:9783642302169
    • Editors:
    • Pang-Ning Tan,
    • Sanjay Chawla,
    • Chin Kuan Ho,
    • James Bailey

    Sponsors

    • SAS
    • AOARD: Asian Office of Aerospace Research and Development
    • PIKOM: PIKOM
    • AFOSR: AFOSR
    • MDeC: Multimedia Development Corporation

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 29 May 2012

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)On Generalizing Static Node Embedding to Dynamic SettingsProceedings of the Fifteenth ACM International Conference on Web Search and Data Mining10.1145/3488560.3498428(410-420)Online publication date: 11-Feb-2022
    • (2021)Online Sampling of Temporal NetworksACM Transactions on Knowledge Discovery from Data10.1145/344220215:4(1-27)Online publication date: 18-Apr-2021
    • (2019)Exploiting interaction links for node classification with deep graph neural networksProceedings of the 28th International Joint Conference on Artificial Intelligence10.5555/3367471.3367489(3223-3230)Online publication date: 10-Aug-2019
    • (2015)AFRAIDProceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 201510.1145/2808797.2810058(659-666)Online publication date: 25-Aug-2015
    • (2013)Network SamplingACM Transactions on Knowledge Discovery from Data10.1145/26014388:2(1-56)Online publication date: 1-Jun-2013
    • (2013)Using social network knowledge for detecting spider constructions in social security fraudProceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining10.1145/2492517.2500292(813-820)Online publication date: 25-Aug-2013
    • (2013)Modeling dynamic behavior in large evolving graphsProceedings of the sixth ACM international conference on Web search and data mining10.1145/2433396.2433479(667-676)Online publication date: 4-Feb-2013
    • (2012)Role-dynamicsProceedings of the 21st International Conference on World Wide Web10.1145/2187980.2188234(997-1006)Online publication date: 16-Apr-2012

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media