[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-642-27355-1_17guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Improving item recommendation based on social tag ranking

Published: 04 January 2012 Publication History

Abstract

Content-based filtering is a popular framework for item recommendation. Typical methods determine items to be recommended by measuring the similarity between items based on the tags provided by users. However, because the usefulness of tags depends on the annotator's skills, vocabulary and feelings, many tags are irrelevant. This fact degrades the accuracy of simple content-based recommendation methods. To tackle this issue, this paper enhances content-based filtering by introducing the idea of tag ranking, a state-of-the-art framework that ranks tags according to their relevance levels. We conduct experiments on videos from a video-sharing site. The results show that tag ranking significantly improves item recommendation performance, despite its simplicity.

References

[1]
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-Based Collaborative Filtering Recommendation Algorithms. In: 10th International Conference on World Wide Web (WWW), pp.285-295 (2001).
[2]
Breese, J.S., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: 14th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 43-52 (1998).
[3]
Maltz, D., Ehrlich, K.: Pointing the Way: Active Collaborative Filtering. In: SIGCHI Conference on Human Factors in Computing Systems (CHI), pp. 202- 209 (1995).
[4]
Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho, A., Stumme, G.: Evaluating Similarity Measures for Emergent Semantics of Social Tagging. In: 18th International Conference on World Wide Web (WWW), pp. 641-650 (2009).
[5]
Golder, S., Huberman, B.A.: Usage patterns of collaborative tagging systems. Journal of Information Science 32(2), 198-208 (2006).
[6]
Liu, D., Hua, X.-S., Yang, L., Wang, M., Zhang, H.-J.: Tag Ranking. In: 18th International Conference on World Wide Web (WWW), pp. 351-360 (2009).
[7]
Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley (1989).
[8]
Sigurbjörnsson, B., Zwol, R.V.: Flickr tag recommendation based on collective knowledge. In: 17th International Conference on World Wide Web (WWW), pp. 327-336 (2008).
[9]
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems 22(1), 5-53 (2004).
[10]
Yates, R.-B., Neto, B.-R.: Modern Information Retrieval. Addison Wesley (1999).
[11]
Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining Content-Based and Collaborative Filters in an Online Newspaper. In: ACM SIGIR Workshop on Recommender Systems (1999).
[12]
Pazzani, M.: A Framework for Collaborative, Content-Based, and Demographic Filtering. Artificial Intelligence Review, 393-408 (1999).

Cited By

View all
  • (2018)Tagging users based on Twitter listsInternational Journal of Web Engineering and Technology10.1504/IJWET.2012.0485267:3(273-298)Online publication date: 20-Dec-2018
  • (2017)Exploring A Trust Based Recommendation Approach for Videos in Online Social NetworkJournal of Signal Processing Systems10.1007/s11265-016-1116-786:2-3(207-219)Online publication date: 1-Mar-2017

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
MMM'12: Proceedings of the 18th international conference on Advances in Multimedia Modeling
January 2012
795 pages
ISBN:9783642273544
  • Editors:
  • Klaus Schoeffmann,
  • Bernard Merialdo,
  • Alexander G. Hauptmann,
  • Chong-Wah Ngo,
  • Yiannis Andreopoulos

Sponsors

  • Förderverein Technische Fakultät: Förderverein Technische Fakultät
  • FascinatE: FascinatE
  • MediaEval: MediaEval
  • LAKESIDE-LABS: Lakeside Labs

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 04 January 2012

Author Tags

  1. content-based filtering
  2. recommendation
  3. tag ranking

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Tagging users based on Twitter listsInternational Journal of Web Engineering and Technology10.1504/IJWET.2012.0485267:3(273-298)Online publication date: 20-Dec-2018
  • (2017)Exploring A Trust Based Recommendation Approach for Videos in Online Social NetworkJournal of Signal Processing Systems10.1007/s11265-016-1116-786:2-3(207-219)Online publication date: 1-Mar-2017

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media