[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-642-12098-5_12guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

On t-closeness with KL-divergence and semantic privacy

Published: 01 April 2010 Publication History

Abstract

In this paper, we study how to sanitize the publishing data with sensitive attribute to achieve t-closeness and δ-disclosure privacy under Incognito framework. t-closeness is a privacy measure proposed to account for skewness attack and similarity attack, which are limitations of l-diversity. Under the t-closeness model, the distance between the privacy attribute distribution and the global one should be under the threshold t. Whereas semantic privacy (δ-disclosure privacy) is used to measure the incremental information gain from the anonymized tables. We use the Kullback-Leibler divergence to measure the distance between distributions and discuss the properties of the semantic privacy. We also study the relationship between t-closeness with KL-divergence and semantic privacy, and show that t-closeness with KL-divergence and δ-disclosure privacy satisfy the generalization property and the subset property, which entail us to use the Incognito algorithm. Experiments demonstrate the efficiency and effectiveness of our approaches.

References

[1]
http://www.cs.cornell.edu/database/privacy/code/l-diversity/ incognito-ldiversity.tgz
[2]
Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Approximation algorithms for k-anonymity. Journal of Privacy Technology (2005).
[3]
Bayardo, R., Agrawal, R.: Data privacy through optimal k-anonymization. In: ICDE 2005 (2005).
[4]
Brickell, J., Shmatikov, V.: The cost of privacy: Destruction of data-mining utility in anonymized data publishing. In: KDD 2008 (2008).
[5]
Bu, Y., Fu, A., Wong, R., Chen, L., Li, J.: Privacy preserving serial data publishing by role composition. In: VLDB 2008 (2008).
[6]
Cover, T., Thomas, J.: Elements of Information Theory. Wiley Interscience, Hoboken (1991).
[7]
Ghinita, G., Karras, P., Kalnis, P.,Mamoulis, N.: Fast data anonymization with low information loss. In: VLDB 2007 (2007).
[8]
Kifer, D., Gehrke, J.: Injecting utility into anonymized datasets. In: SIGMOD (2006).
[9]
LeFevre, K., DeWitt, D., Ramakrishnan, R.: Incognito: Efficient full-domain k-anonymity. In: SIGMOD (2005).
[10]
LeFevre, K., DeWitt, D., Ramakrishnan, R.:Workload-aware anonymization. In: KDD 2006 (2006).
[11]
Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: ICDE 2007 (2007).
[12]
Li, T., Li, N.: On the tradeoff between privacy and utility in data publishing. In: KDD 2009 (2009).
[13]
Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy beyond k-anonymity. In: ICDE 2006 (2006).
[14]
Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: PODS 2004 (2004).
[15]
Park, H., Shim, K.: Approximate algorithms for k-anonymity. In: SIGMOD 2007 (2007).
[16]
Samarati, P.: Protecting respondents identities in microdata release. IEEE Transactions on Knowledge and Data Engineering 13, 1010-1027 (2001).
[17]
Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. Int. Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10 (2002).
[18]
Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems 10 (2002).
[19]
Xiao, X., Tao, Y.: Anatomy: Simple and effective privacy preservation. In: VLDB 2006 (2006).
[20]
Xiao, X., Tao, Y.: Personalized privacy preservation. In: SIGMOD 2006 (2006).
[21]
Xiao, X., Tao, Y.: m-invariance: Towards privacy preserving re-publication of dynamic datasets. In: SIGMOD 2007 (2007).
[22]
Xiao, X., Tao, Y.: Dynamic anonymization: Accurate statistical analysis with privacy preservation. In: SIGMOD 2008 (2008).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
DASFAA'10: Proceedings of the 15th international conference on Database Systems for Advanced Applications - Volume Part II
April 2010
493 pages
ISBN:3642120970
  • Editors:
  • Hiroyuki Kitagawa,
  • Yoshiharu Ishikawa,
  • Qing Li,
  • Chiemi Watanabe

Sponsors

  • NIMS: National Institute for Materials Science
  • BeaconIT
  • National Institute of Advanced Industrial Science and Technology
  • KDDI R&D Laboratories Inc.
  • Mitsubishi Electric Corporation

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 April 2010

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media