[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-642-01811-4_15guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Integrated Digital Image Correlation for the Identification of Mechanical Properties

Published: 04 May 2009 Publication History

Abstract

Digital Image Correlation (DIC) is a powerful technique to provide full-field displacement measurements for mechanical tests of materials and structures. The displacement fields may be further processed as an entry for identification procedures giving access to parameters of constitutive laws. A new implementation of a Finite Element based Integrated Digital Image Correlation (I-DIC) method is presented, where the two stages (image correlation and mechanical identification) are coupled. This coupling allows one to minimize information losses, even in case of low signal-to-noise ratios. A case study for elastic properties of a composite material illustrates the approach, and highlights the accuracy of the results. Implementations on GPUs (using CUDA) leads to high speed performance while preserving the versatility of the methodology.

References

[1]
Rastogi, P.K. (ed.): Photomechanics, p. 77. Springer, Berlin (2000)
[2]
Sutton, M.A., Wolters, W.J., Peters, W.H., Ranson, W.F., McNeill, S.R.: Determination of Displacements Using an Improved Digital Correlation Method. Im. Vis. Comp. 1(3), 133-139 (1983)
[3]
Sutton, M.A., Cheng, M., Peters, W.H., Chao, Y.J., McNeill, S.R.: Application of an optimized digital correlation method to planar deformation analysis. Im. Vis. Comp. 4(3), 143-150 (1986)
[4]
Sutton, M.A., McNeill, S.R., Helm, J.D., Chao, Y.J.: Advances in Two-Dimensional and Three-Dimensional Computer Vision. In: Rastogi, P.K. (ed.) Photomechanics, pp. 323-372. Springer, Berlin (2000)
[5]
Elnasri, I., Pattofatto, S., Zhao, H., Tsitsiris, H., Hild, F., Girard, Y.: Shock enhancement of cellular structures under impact loading: Part I Experiments. J. Mech. Phys. Solids 55, 2652-2671 (2007)
[6]
Verhulp, E., van Rietbergen, B., Huiskes, R.: A three-dimensional digital image correlation technique for strain measurements in microstructures. J. Biomech. 37(9), 1313-1320 (2004)
[7]
Liu, L., Morgan, E.: Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone. J. Biomech. 40, 3516-3520 (2007)
[8]
Lenoir, N., Bornert, M., Desrues, J., Bésuelle, P., Viggiani, G.: Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43, 193-205 (2007)
[9]
Roux, S., Hild, F., Viot, P., Bernard, D.: Three dimensional image correlation from X-Ray computed tomography of solid foam. Comp. Part A 39(8), 1253-1265 (2008)
[10]
Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Num. Meth. Eng. 46(1), 133-150 (1999)
[11]
Réthoré, J., Hild, F., Roux, S.: Extended digital image correlation with crack shape optimization. Int. J. Num. Meth. Eng. 73(2), 248-272 (2008)
[12]
Réthoré, J., Tinnes, J.-P., Roux, S., Buffière, J.-Y., Hild, F.: Extended threedimensional digital image correlation (X3D-DIC). C. R. Mécanique 336, 643-649 (2008)
[13]
Fayolle, X., Calloch, S., Hild, F.: Controlling testing machines with digital image correlation. Exp. Tech. 31(3), 57-63 (2007)
[14]
Fennema, C., Thompson, W.: Velocity determination in scenes containing several moving objects. Comput. Graph. Im. Proc. 9, 301-315 (1979)
[15]
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185-203 (1981)
[16]
Simoncelli, E.P.: Bayesian Multi-Scale Differential Optical Flow. In: Jähne, B., Haussecker, H., Geissler, P. (eds.) Handbook of Computer Vision and Applications, pp. 297-422. Academic Press, London (1999)
[17]
Mitiche, A., Bouthemy, P.: Computation and analysis of image motion: A synopsis of current problems and methods. Int. J. Comp. Vision 19, 29-55 (1996)
[18]
Black, M.: Robust Incremental Optical Flow, Ph.D dissertation, Yale University (1992)
[19]
Odobez, J.-M., Bouthemy, P.: Robust multiresolution estimation of parametric motion models. J. Visual Comm. Image Repres. 6, 348-365 (1995)
[20]
Bogen, D., Rahdert, D.: A strain energy approach to regularization in displacement field fits of elastically deforming bodies. IEEE Trans. Pattern Analysis and Machine Intelligence 18, 629-635 (1996)
[21]
DeCarlo, D., Metaxas, D.: Optical flow constraints on deformable models with application to face tracking. Int. J. Comp. Vision 38, 99-127 (2000)
[22]
Roux, S., Hild, F.: Digital Image Mechanical Identification (DIMI). Exp. Mech. 48(4), 495-508 (2008)
[23]
Avril, S., Bonnet, M., Bretelle, A.-S., Grédiac, M., Hild, F., Ienny, P., Latourte, F., Lemosse, D., Pagano, S., Pagnacco, E., Pierron, F.: Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech. 48(4), 381-402 (2008)
[24]
Kavanagh, K.T., Clough, R.W.: Finite Element Applications in the Characterization of Elastic Solids. Int. J. Solids Struct. 7, 11-23 (1971)
[25]
Besnard, G., Hild, F., Roux, S.: "Finite-element" displacement fields analysis from digital images: Application to Portevin-Le Chatelier bands. Exp. Mech. 46, 789-803 (2006)
[26]
Belleman, R.G., Bédorf, J., Portegies Zwart, S.F.: High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA. New Astron. 13(2), 103-112 (2008)
[27]
Göddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Buijssen, S.H.M., Grajewski, M., Turek, S.: Exploring weak scalability for FEM calculations on a GPUenhanced cluster. Parallel Comput. 33, 685-699 (2007)
[28]
Gölddeke, D., Strzodka, R., Turek, S.: Performance and accuracy of hardwareoriented native-, emulated- and mixed-precision solvers in FEM simulations result. Int. J. Parallel, Emerg. Distrib. Syst. 22(4), 221-256 (2007)
[29]
Leclerc, H.: Plateforme metil : optimisations et facilités liées à la génération de code. In: Proc. 8e Colloque National en Calcul des Structures, Giens (2007)
[30]
Cooreman, S., Lecompte, D., Sol, H., Vantomme, J., Debruyne, D.: Elasto-plastic material parameter identification by inverse methods: Calculation of the sensitivity matrix. Int. J. Solids Struct. 44(13), 4329-4341 (2007)
[31]
NVIDIA Corporation, NVIDIA CUDA compute unified device architecture programming guide (2007), http://developer.nvidia.com/cuda
  1. Integrated Digital Image Correlation for the Identification of Mechanical Properties

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      MIRAGE '09: Proceedings of the 4th International Conference on Computer Vision/Computer Graphics CollaborationTechniques
      May 2009
      436 pages
      ISBN:9783642018107
      • Editors:
      • André Gagalowicz,
      • Wilfried Philips

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 04 May 2009

      Author Tags

      1. Digital Image Correlation
      2. Finite Element Method
      3. GPU
      4. material property identification

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 0
        Total Downloads
      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 27 Jan 2025

      Other Metrics

      Citations

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media