[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-540-78921-5_2guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

First Elements on Knowledge Discovery Guided by Domain Knowledge (KDDK)

Published: 22 March 2023 Publication History

Abstract

In this paper, we present research trends carried out in the Orpailleur team at loria, showing how knowledge discovery and knowledge processing may be combined. The knowledge discovery in databases process (kdd) consists in processing a huge volume of data for extracting significant and reusable knowledge units. From a knowledge representation perspective, the kdd process may take advantage of domain knowledge embedded in ontologies relative to the domain of data, leading to the notion of “knowledge discovery guided by domain knowledge” or kddk. The kddk process is based on the classification process (and its multiple forms), e.g. for modeling, representing, reasoning, and discovering. Some applications are detailed, showing how kddk can be instantiated in an application domain. Finally, an architecture of an integrated kddk system is proposed and discussed.

References

[1]
Aamodt, A.: Knowledge-Intensive Case-Based Reasoning and Sustained Learning. In: Aiello, L.C. (ed.) Proc. of the 9th European Conference on Artificial Intelligence (ECAI 1990) (1990)
[2]
Baader F., Calvanese D., McGuinness D., Nardi D., and Patel-Schneider P. The Description Logic Handbook 2003 Cambridge Cambridge University Press
[3]
Barbut, M., Monjardet, B.: Ordre et classification – Algèbre et combinatoire (2 tomes). Hachette, Paris (1970)
[4]
Bendaoud, R., Rouane Hacene, M., Toussaint, Y., Delecroix, B., Napoli, A.: Text-based ontology construction using relational concept analysis. In: Flouris, G., d’Aquin, M. (eds.) Proceedings of the International Workshop on Ontology Dynamics, Innsbruck (Austria), pp. 55–68 (2007)
[5]
Napoli A., Berasaluce S., Laurenço C., and Niel G. Boulicaut J.-F., Esposito F., Giannotti F., and Pedreschi D. An Experiment on Knowledge Discovery in Chemical Databases Knowledge Discovery in Databases: PKDD 2004 2004 Heidelberg Springer 39-51
[6]
Stumme G., Berendt B., and Hotho A. Horrocks I. and Hendler J. Towards Semantic Web Mining The Semantic Web - ISWC 2002 2002 Heidelberg Springer 264-278
[7]
Brachman, R.J., Selfridge, P.G., Terveen, L.G., Altman, B., Borgida, A., Halper, F., Kirk, T., Lazar, A., McGuinness, D.L., Resnick, L.A.: Knowledge representation support for data archaeology. In: Proceedings of the 1st International Conference on Information and Knowledge Management (CKIM 1992), Baltimore, pp. 457–464 (1992)
[8]
Carpineto C. and Romano G. Concept Data Analysis: Theory and Applications 2004 Chichester John Wiley & Sons
[9]
Cherfi H., Napoli A., and Toussaint Y. Towards a text mining methodology using association rules extraction Soft Computing 2006 10 5 431-441
[10]
Cimiano P., Hotho A., and Staab S. Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis Journal of Artificial Intelligence Research 2005 24 305-339
[11]
Stumme G., Hotho A., Tane J., and Cimiano P. Eklund P.W. Conceptual Knowledge Processing with Formal Concept Analysis and Ontologies Concept Lattices 2004 Heidelberg Springer 189-207
[12]
d’Aquin M., Badra F., Lafrogne S., Lieber J., Napoli A., and Szathmary L. Veloso M.M. Case base mining for adaptation knowledge acquisition IJCAI 2007 2007 San Francisco Morgan Kaufman 750-755
[13]
d’Aquin M., Bouthier C., Brachais S., Lieber J., and Napoli A. Knowledge Edition and Maintenance Tools for a Semantic Portal in Oncology International Journal on Human–Computer Studies 2005 62 5 619-638
[14]
Dunham M.H. Data Mining – Introductory and Advanced Topics 2003 Upper Saddle River Prentice Hall
[15]
Eng, C., Thibessard, A., Hergalant, S., Mari, J.-F., Leblond, P.: Data mining using hidden markov models (HMM2) to detect heterogeneities into bacteria genomes. In: Journées Ouvertes Biologie, Informatique et Mathématiques – JOBIM 2005, Lyon, France (2005)
[16]
Fensel D., Hendler J., Lieberman H., and Wahlster W. Spinning the Semantic Web 2003 Cambridge, Massachusetts The MIT Press
[17]
Fuchs B., Lieber J., Mille A., and Napoli A. Horn W. An Algorithm for Adaptation in Case-based Reasoning Proceedings of the 14th European Conference on Artificial Intelligence (ECAI-2000) 2000 Amsterdam IOS Press 45-49
[18]
Ganter B. and Wille R. Formal Concept Analysis 1999 Heidelberg Springer
[19]
Han J. and Kamber M. Data Mining: Concepts and Techniques 2001 San Francisco Morgan Kaufmann Publishers
[20]
Hand D., Mannila H., and Smyth P. Principles of Data Mining 2001 Cambridge The MIT Press
[21]
Janetzko, D., Cherfi, H., Kennke, R., Napoli, A., Toussaint, Y.: Knowledge-based selection of association rules for text mining. In: de Màntaras, R.L., Saitta, L. (eds.) 16h European Conference on Artificial Intelligence – ECAI 2004, Valencia, Spain, pp. 485–489 (2004)
[22]
Jay N., Kohler F., and Napoli A. Ben Yahia S., Mephu-Nguifo E., and Behlohlavek R. Using formal concept analysis for mining and interpreting patient flows within a healthcare network CLA 2006 2008 Heidelberg Springer 263-268
[23]
Kuznetsov S.O. Eklund P.W. Machine Learning and Formal Concept Analysis Concept Lattices 2004 Heidelberg Springer 287-312
[24]
Kuznetsov S.O. and Obiedkov S.A. Comparing performance of algorithms for generating concept lattices Journal of Theoretical Artificial Intelligence 2002 14 2/3 189-216
[25]
Le Ber F., Benoit M., Schott C., Mari J.-F., and Mignolet C. Studying crop sequences with CarrotAge, a HMM-based data mining software Ecological Modelling 2006 191 1 170-185
[26]
Le Ber F. and Napoli A. Design and comparison of lattices of topological relations for spatial representation and reasoning Journal of Experimental & Theoretical Artificial Intelligence 2003 15 3 331-371
[27]
Lieber J., d’Aquin M., Bey P., Napoli A., Rios M., and Sauvagnac C. Dojat M., Keravnou E.T., and Barahona P. Adaptation knowledge acquisition, a study for breast cancer treatment Artificial Intelligence in Medicine 2003 Heidelberg Springer 304-313
[28]
Liu H., Lu H., Feng L., and Hussain F. Zhong N. and Zhou L. Efficient Search of Reliable Exceptions Methodologies for Knowledge Discovery and Data Mining 1999 Heidelberg Springer 194-203
[29]
Mari J.-F., Haton J.-P., and Kriouile A. Automatic Word Recognition Based on Second-Order Hidden Markov Models IEEE Transactions on Speech and Audio Processing 1997 5 22-25
[30]
Mari J.-F. and Le Ber F. Temporal and spatial data mining with second-order hidden models Soft Computing 2006 10 5 406-414
[31]
Maumus, S., Napoli, A., Szathmary, L., Visvikis-Siest, S.: Fouille de données biomédicales complexes: extraction de règles et de profils génétiques dans le cadre de l’étude du syndrome métabolique. In: Journées Ouvertes Biologie Informatique Mathématiques – JOBIM 2005, Lyon, France, pp. 169–173 (2005)
[32]
Napoli A., Messai N., Devignes M.-D., and Smaïl-Tabbone M. Dau F., Mugnier M.-L., and Stumme G. Querying a Bioinformatic Data Sources Registry with Concept Lattices Conceptual Structures: Common Semantics for Sharing Knowledge 2005 Heidelberg Springer 323-336
[33]
Messai, N., Devignes, M.-D., Napoli, A., Smaïl-Tabbone, M.: Br-explorer: An fca-based algorithm for information retrieval. In: Ben Yahia, S., Mephu-Nguifo, E. (eds.) Fourth International Conference on Concept Lattices and their Applications (CLA-2006), Hammamet, Tunisia (2006)
[34]
Mollo, V.: Usage des ressources, adaptation des savoirs et gestion de l’autonomie dans la décision thérapeutique. Thèse d’Université, Conservatoire National des Arts et Métiers (2004)
[35]
Napoli A. Cohen H. and Lefebvre C. A smooth introduction to symbolic methods for knowledge discovery Handbook of Categorization in Cognitive Science 2005 Amsterdam Elsevier 913-933
[36]
Napoli, A., Le Ber, F.: The Galois lattice as a hierarchical structure for topological relations. Annals of Mathematics and Artificial Intelligence 49(1–4), 171–190 (2007); Special volume on Knowledge discovery and discrete mathematics and a tribute to the memory of Peter L. Hammer
[37]
Padmanabhan B. and Tuzhilin A. On characterization and discovery of minimal unexpected patterns in rule discovery IEEE Transactions on Knowledge and Data Engineering 2006 18 2 202-216
[38]
Pennerath, F., Napoli, A.: La fouille de graphes dans les bases de données réactionnelles au service de la synthèse en chimie organique. In: Ritschard, G., Djeraba, C. (eds.) Extraction et gestion des connaissances (EGC 2006), Lille, pp. 517–528, RNTI-E-6, Cépaduès-Éditions Toulouse (2006)
[39]
Quan T.T., Hui S.C., Fong A.C.M., and Cao T.H. McIlraith S.A., Plexousakis D., and van Harmelen F. Automatic generation of ontology for scholarly semantic web The Semantic Web – ISWC 2004 2004 Heidelberg Springer 726-740
[40]
Smaïl-Tabbone M., Osman S., Messai N., Napoli A., and Devignes M.-D. R. Berthold M., Glen R.C., Diederichs K., Kohlbacher O., and Fischer I. Bioregistry: A structured metadata repository for bioinformatic databases Computational Life Sciences 2005 Heidelberg Springer 46-56
[41]
Staab S. and Studer R. Handbook on Ontologies 2004 Berlin Springer
[42]
Stumme G. Priss U., Corbett D.R., and Angelova G. Formal concept analysis on its way from mathematics to computer science Conceptual Structures: Integration and Interfaces 2002 Heidelberg Springer 2-19
[43]
Suzuki E. Undirected Discovery of Interesting Exception Rules International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI) 2002 16 8 1065-1086
[44]
Szathmary, L.: Symbolic Data Mining Methods with the Coron Platform. In: Thèse d’informatique, Universit Henri Poincaré – Nancy 1, France (2006)
[45]
Szathmary, L., Maumus, S., Petronin, P., Toussaint, Y., Napoli, A.: Vers l’extraction de motifs rares. In: Ritschard, G., Djeraba, C. (eds.) Extraction et gestion des connaissances (EGC 2006), Lille, pp. 499–510 (2006) RNTI-E-6, Cépaduès-Éditions Toulouse
[46]
Szathmary L. and Napoli A. Ganter B., Godin R., and Mephu Nguifo E. Coron: A framework for levelwise itemset mining algorithms Formal Concept Analysis 2005 Heidelberg Springer 110-113
[47]
Szathmary, L., Napoli, A., Kuznetsov, S.O.: Zart: A multifunctional itemset mining algorithm. In: Diatta, J., Eklund, P., Liquière, M. (eds.) Proceedings of the Fifth International Conference on Concept Lattices and their Applications, Montpellier, France, pp. 26–37 (2007)
[48]
Szathmary L., Napoli A., and Valtchev P. Towards rare itemset mining Proceedings of the IEEE International Conference on Tools with Artificial Intelligence (ICTAI) 2007 Los Alamitos IEEE Computer Society Press
[49]
Ténier S., Toussaint Y., Napoli A., and Polanco X. Instantiation of relations for semantic annotation The 2006 IEEE/WIC/ACM International Conference on Web Intelligence - WI 2006 2006 Los Alamitos IEEE Computer Society Press 463-472
[50]
Ténier S., Napoli A., Polanco X., and Toussaint Y. Handschuh S. Semantic annotation of webpages The Semantic Web – ISWC 2005 2005 Heidelberg Springer
[51]
Valtchev P., Missaoui R., and Godin R. Eklund P.W. Formal concept analysis for knowledge discovery and data mining: The new challenges Concept Lattices 2004 Heidelberg Springer 352-371
[52]
Weiss G.M. Mining with rarity: a unifying framework SIGKDD Exploration Newsletter 2004 6 1 7-19
[53]
Wille R. Missaoui R. and Schmidt J. Mathods of conceptual knowledge processing Formal Concept Analysis 2006 Heidelberg Springer 1-29
[54]
Wu X., Zhang C., and Zhang S. Efficient mining of both positive and negative association rules ACM Transactions on Information Systems 2004 22 3 381-405

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Concept Lattices and Their Applications: Fourth International Conference, CLA 2006 Tunis, Tunisia, October 30-November 1, 2006 Selected Papers
Oct 2006
203 pages
ISBN:978-3-540-78920-8
DOI:10.1007/978-3-540-78921-5

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 22 March 2023

Author Tags

  1. Association Rule
  2. Knowledge Discovery
  3. Domain Knowledge
  4. Text Mining
  5. Concept Lattice

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media