[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-540-74621-8_6guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

A Compressing Translation from Propositional Resolution to Natural Deduction

Published: 10 September 2007 Publication History

Abstract

We describe a translation from SAT solver generated propositional resolution refutation proofs to classical natural deduction proofs. The resulting proof can usually be checked quicker than one that simply simulates the original resolution proof. We use this result in interactive theorem provers, to speed up reconstruction of SAT solver generated proofs. The translation is efficient, running in time linear in the length of the original proof, and effective, easily scaling up to large proofs with millions of inferences.

References

[1]
Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W{P} is tractable. In: FOCS, pp. 210-219. IEEE Computer Society Press, Los Alamitos (2001)
[2]
Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.F.: Expressiveness + automation + soundness: Towards combining SMT solvers and interactive proof assistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 167-181. Springer, Heidelberg (2006)
[3]
Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A theorem-proving environment for higher order logic. Cambridge University Press, Cambridge (1993)
[4]
Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI International (1995)
[5]
Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265-269. Springer, Heidelberg (1996)
[6]
Harrison, J.: Stålmarck's algorithm as a HOL derived rule. In: von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 221-234. Springer, Heidelberg (1996)
[7]
Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant: A tutorial: Version 7.2. Technical Report RT-0256, INRIA (February 2002)
[8]
Mitchell, D.G.: A SAT solver primer. In: EATCS Bulletin (The Logic in Computer Science Column), vol. 85, pp. 112-133 (February 2005)
[9]
Morrison, D.R.: PATRICIA-Practical Algorithm To Retrieve Information Code. In Alphanumeric. J. ACM 15(4), 514-534 (1968)
[10]
Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference, pp. 530-535. ACM Press, New York (2001)
[11]
Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748-752. Springer, Heidelberg (1992)
[12]
Paulson, L.C.: A Generic Theorem Prover. In: Paulson, L.C. (ed.) Isabelle. LNCS, vol. 828, Springer, Heidelberg (1994)
[13]
Shankar, N.: Using decision procedures with a higher-order logic. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 5-26. Springer, Heidelberg (2001)
[14]
Sinz, C.: Compressing propositional proofs by common subproof extraction. In: Pichler, F. (ed.) Euro Conference on Computer Aided Systems Theory (2007)
[15]
Ukkonen, E.: Online construction of suffix trees. Algorithmica 14(3), 249-260 (1995)
[16]
Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL theorem provers. JAL (special issue on Empirically Successful Computerized Reasoning) (to appear, 2007)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
FroCoS '07: Proceedings of the 6th international symposium on Frontiers of Combining Systems
September 2007
282 pages
ISBN:9783540746201

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 10 September 2007

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Dec 2024

Other Metrics

Citations

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media