[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-319-22849-5_11guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Quality Metrics for Linked Open Data

Published: 01 September 2015 Publication History

Abstract

The vision of the Linked Open Data LOD initiative is to provide a model for publishing data and meaningfully interlinking such dispersed but related data. Despite the importance of data quality for the successful growth of the LOD, only limited attention has been focused on quality of data prior to their publication on the LOD. This paper focuses on the systematic assessment of the quality of datasets prior to publication on the LOD cloud. To this end, we identify important quality deficiencies that need to be avoided and/or resolved prior to the publication of a dataset. We then propose a set of metrics to measure and identify these quality deficiencies in a dataset. This way, we enable the assessment and identification of undesirable quality characteristics of a dataset through our proposed metrics.

References

[1]
Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic web. In: 3rd International Workshop on Linked Data on the Web 2010
[2]
Fürber, C., Hepp, M.: Using semantic web resources for data quality management. In: Cimiano, P., Pinto, H. eds. EKAW 2010. LNCS, vol. 6317, pp. 211---225. Springer, Heidelberg 2010
[3]
Behkamal, B., Kahani, M., Paydar, S., Dadkhah, M., Sekhavaty, E.: Publishing Persian linked data; challenges and lessons learned. In: 5th International Symposium on Telecommunications IST, pp. 732---737. IEEE 2010
[4]
Paydar, S., Kahani, M., Behkamal, B.: Publishing data of ferdowsi university of mashhad as linked data. In: Computational Intelligence and Software Engineering 2010
[5]
Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality Assessment for Linked Data: A Survey. Accepted in Semantic Web Journal 2014. http://www.semantic-web-journal.net/content/quality-assessment-linked-data-survey
[6]
Lei, Y., Nikolov, A., Uren, V., Motta, E.: Detecting quality problems in semantic metadata without the presence of a gold standard. In: 5th International EON Workshop at International Semantic Web Conference, pp. 51---60 2007
[7]
Bizer, C., Cyganiak, R.: Quality-driven information filtering using the WIQA policy framework. Web Semant.: Sci., Serv. Agents World Wide Web 7, 1---10 2009
[8]
Brüggemann, S., Grüning, F.: Using ontologies providing domain knowledge for data quality management. In: Pellegrini, T., Auer, S., Tochtermann, K., Schaffert, S. eds. Networked Knowledge - Networked Media. SCI, vol. 221, pp. 187---203. Springer, Heidelberg 2009
[9]
Naumann, F., Leser, U., Freytag, J.C.: Quality-driven integration of heterogeneous information systems. In: 25th International Conference on Very Large Data Bases VLDB 1999, Edinburgh, Scotland, UK, pp. 447---458 1999
[10]
Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM 45, 211---218 2002
[11]
ISO: ISO/IEC 25012- Software engineering - Software product Quality Requirements and Evaluation SQuaRE. Data quality model 2008
[12]
Peralta, V.: Data freshness and data accuracy: A state of the art. Instituto de Computacion, Facultad de Ingenieria, Universidad de la Republica 2006
[13]
Eppler, M.J., Wittig, D.: Conceptualizing information quality: A review of information quality frameworks from the last ten years. In: 5th International Conference on Information Quality, pp. 83---96 2000
[14]
Behkamal, B., Kahani, M., Bagheri, E., Jeremic, Z.: A Metrics-Driven approach for quality Assessment of Linked open Data. J. Theoritical Appl. Electron. Commer. Res. 9, 64---79 2014
[15]
Bagheri, E., Gasevic, D.: Assessing the maintainability of software product line feature models using structural metrics. Softw. Qual. J. 19, 579---612 2011

Cited By

View all
  • (2021)Linked Data Quality Assessment: A SurveyWeb Services – ICWS 202110.1007/978-3-030-96140-4_5(63-76)Online publication date: 10-Dec-2021
  • (2018)A comprehensive quality model for Linked DataSemantic Web10.3233/SW-1702679:1(3-24)Online publication date: 1-Jan-2018

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
DEXA 2015: Proceedings, Part I, of the 26th International Conference on Database and Expert Systems Applications - Volume 9261
September 2015
546 pages
ISBN:9783319228488

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2015

Author Tags

  1. Linked open data
  2. Metrics
  3. Quality deficiencies
  4. RDF datasets

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 04 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Linked Data Quality Assessment: A SurveyWeb Services – ICWS 202110.1007/978-3-030-96140-4_5(63-76)Online publication date: 10-Dec-2021
  • (2018)A comprehensive quality model for Linked DataSemantic Web10.3233/SW-1702679:1(3-24)Online publication date: 1-Jan-2018

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media