[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-319-20804-6_55guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Personalized Energy Reduction Cyber-physical System PERCS: A Gamified End-User Platform for Energy Efficiency and Demand Response

Published: 02 August 2015 Publication History

Abstract

The mission of the Personalized Energy Reduction Cyber-physical System PERCS is to create new possibilities for improving building operating efficiency, enhancing grid reliability, avoiding costly power interruptions, and mitigating greenhouse gas emissions. PERCS proposes to achieve these outcomes by engaging building occupants as partners in a user-centered smart service platform. Using a non-intrusive load monitoring approach, PERCS uses a single sensing point in each home to capture smart electric meter data in real time. The household energy signal is disaggregated into individual load signatures of common appliances e.g., air conditioners, yielding near real-time appliance-level energy information. Users interact
with PERCS via a mobile phone platform that provides household- and appliance-level energy feedback, tailored recommendations, and a competitive game tied to energy use and behavioral changes. PERCS challenges traditional energy management approaches by directly engaging occupant as key elements in a technological system.

References

[1]
United States Environmental Protection Agency: Causes of climate change 2014. http://www.epa.gov/climatechange/science/causes.html#greenhouseeffect/. Accessed 3 Feb 2015
[2]
Smith, K.R., Jerrett, M., Anderson, H.R., Burnett, R.T., Stone, V., Derwent, R., Thurston, G.: Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants. Lancet 3749707, 2091---2103 2009
[3]
United States Environmental Protection Agency: Sources of greenhouse gas emissions 2014. http://www.epa.gov/climatechange/ghgemissions/sources/electricity.html/. Accessed 3 Feb 2015
[4]
Targosz, R., Manson, J.: Pan European LPQI power quality survey. In: Proceedings of the 19th International Conference on Electricity Distribution, Paper 0263 2007. http://www.cired.net
[5]
LaCommare, K.H., Eto, J.H.: Understanding the cost of power interruptions to U.S. electricity consumers. Lawrence Berkeley National Laboratory, Berkeley 2004. http://emp.lbl.gov/publications/understanding-cost-power-interruptions-us-electricity-consumers. Accessed 21 Mar 2014
[6]
California Independent Systems Operator: Demand response and energy efficiency roadmap: maximizing preferred resources. California Independent Systems Operator, Folsom 2013. http://www.caiso.com/Documents/DR-EERoadmap.pdf. Accessed 4 Apr 2014
[7]
Zhou, Q., Natarajan, S., Simmhan, Y., Prasanna, V.: Semantic information modeling for emerging applications in smart grid. In: Proceedings of the 9th Annual International Conference on Information Technology: New Generations, pp. 775---782. IEEE, Las Vegas 2012. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6209085
[8]
United States Federal Energy Regulatory Commission: A national assessment of demand response potential 2009. http://www.ferc.gov/legal/staff-reports/06-09-demand-response.pdf. Accessed 18 Mar 2014
[9]
Ehrhardt-Martinez, K., Donnelly K., Laitner, J.: Advanced metering initiatives and residential feedback programs: a meta-review for household electricity-saving opportunities. American Council for an Energy-Efficient Economy, Washington, D.C. 2010. http://www.aceee.org/research-report/e105
[10]
Wang, K., Swisher, J., Stewart, S.: Comprehensive home energy management systems for demand response: are they worth the cost? In: Proceedings of the 2005 International Energy Program Evaluation Conference: Reducing Uncertainty Through Evaluation, pp. 165---176. International Energy Program Evaluation Conference, New York 2005. http://www.iepec.org/index.htm. Accessed 4 Apr 2014
[11]
Anderson, G., Bailey, S., Franco, G., Fugate, N., Grau, J., Hestsers, M., Hungerford, D., Jaske, M., Kavalec, C., Kondoleon, D., Korosec, S., Gallardo, C.L., Giyenko, E., Gravely, M., Loyer, J., McKinney, J., Milliron, M., Neff, B., O'Neill, E., O'Neill-Mariscal, G., Olon, T., Patterson, J., Rhyne, I., Spiegel, L., Stom, D., Vidaver, D., Walter, J., Wilhelm, S.: Integrated Energy Policy Report: 2013. California Energy Commission, Sacramento 2014
[12]
Fogg, B.J.: Persuasive Technology: Using Computers to Change What We Think and Do. Morgan Koffman Publishers, San Francisco 2002
[13]
Abrahamse, W., Steg, L., Vlek, C., Rothengatter, T.: A review of intervention studies aimed at household energy conservation. J. Environ. Psychol. 25, 273---290 2005
[14]
Vine, D., Buys, L., Morris, P.: The effectiveness of energy feedback for conservation and peak demand: A literature review. Open J. Energ. Effi. 2, 7---15 2013
[15]
Armel, K.C., Gupta, A., Shrimali, G., Albert, A.: Is disaggregation the holy grail of energy efficiency? the case of electricity. Energy Policy 52, 213---234 2013
[16]
Berges, M., Goldman, E., Matthews, S.H., Soibelman, L.: Enhancing electricity audits in residential buildings with nonintrusive load monitoring. J. Ind. Ecol. 145, 844---858 2010
[17]
Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 8012, 1870---1891 1992. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=192069&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D192069
[18]
Kim, H., Marwah, M., Arlitt, M., Lyon, G., Jan, J.: Unsupervised disaggregation of low frequency power measurements. In: Proceedings of the 11th SIAM International Conference on Data Mining. SIAM, Mesa 2011
[19]
Berges, M., Goldman, E., Matthews, H.S., Soibelman, L., Anderson, K.: User-centered non-intrusive electricity load monitoring for residential buildings. J. Comput. Civil Eng. 25, 471---480 2011
[20]
Zoha, A., Gluhak, A., Imran, M.A., Rajasegarar, S.: Non-intrusive load monitoring approaches for disaggregated energy sensing: a survey. Sensors 12, 16839---16866 2012
[21]
Lee, S.C., Lin, G.Y., Jih, W.R., Hsu, J.Y.J.: Appliance recognition and unattended appliance detection for energy conservation. In: Proceedings of the Workshops at the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp. 37---44. Association for the Advancement of Artificial Intelligence, Atlanta 2010. http://www.aaai.org/ocs/index.php/WS/AAAIW10/paper/viewFile/2012/2445
[22]
Kolter, J.Z., Jaakkola, T.: Approximate inference in additive factorial HMMs. In: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics. Artificial Intelligence and Statistics, La Palma 2012. http://www.cs.cmu.edu/~zkolter/pubs/kolter-aistats12.pdf
[23]
Seibert, M., Rhodes, B.J., Bomberger, N.A., Beane, P.O., Sroka, J., Kogel, W., Stauffer, C., Kirschner, L., Chalom, E., Bosse, M., Tillson, R.: See coast port surveillance. In: Proceedings of the 2006 Conference on SPIE: Photonics for Port and Harbor Security II, 62040B 2006. http://dx.doi.org/10.1117/12.666980
[24]
Joshi, S.S., Phoha, V.V.: Investigating hidden markov models capabilities in anomaly detection. In: Proceedings of the 43rd ACM Southeast Conference, pp. 98---103. ACM, Kennesaw 2005. http://neuro.bstu.by/ai/To-dom/My_research/failed%201%20subitem/For-research/D-mining/Anomaly-D/KDD-cup-99/Joshi-Phoha%2520ACMSE%252005.pdf
[25]
Chakravarty, P.: The power of data. In: Proceedings of the 6th Annual Conference on Behavior, Energy, and Climate Change. American Council for an Energy-Efficient Economy, Sacramento 2013. http://beccconference.org/wpcontent/uploads/2013/12/Chakravarty_TheHolyGrail_EnergyDisaggregation_Bidgely_2013-11.pdf
[26]
Dietz, T., Gardner, G., Gilligan, J., Stern, P., Vandenbergh, M.: Household actions can provide a behavioral wedge to rapidly reduce U.S. carbon emissions. Proc. Natl. Acad. Sci. 106, 18452---18456 2009
[27]
Gardner, G., Stern, P.C.: The short list: the most effective actions U.S. households can take to curb climate change. Environ. Mag. 1---10 2009. Electronic 2012
[28]
Attari, S.Z., DeKay, M.L., Davidson, C.I., de Bruin, W.B.: Public perceptions of energy consumption and savings. Proc. Natl. Acad. Sci. 107, 16054---16059 2010
[29]
Schultz, P.W.: Making energy conservation the norm. In: Ehrhardt-Martinez, K., Laitner, J. eds. People-Centered Initiatives for Increasing Energy Savings. American Council for an Energy-Efficient Economy, Washington, DC 2010
[30]
Sintov, N.D., Angulo, A., Vezich, S., Goldstein, N.J.: New directions in goal setting: the effects of action planning on electricity conservation. Presented at the 7th Annual Behavior, Energy, and Climate Change Meeting. American Council for an Energy-Efficient Economy, Sacramento 2013
[31]
Asensio, O.I., Delmas, M.A.: Nonprice incentives and energy conservation. Proc. Natl. Acad. Sci. 1126, E510---E515 2015
[32]
Abrahamse, W., Steg, L.: Social influence approaches to encourage resource conservation: a meta-analysis. Glob. Environ. Change 236, 1773---1785 2013
[33]
Schultz, W.P., Nolan, J.N., Cialdini, R.B., Goldstein, N.J., Griskevicius, V.: The constructive, destructive, and reconstructive power of social norms. Psychol. Sci. 18, 429---434 2007
[34]
Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50, 179---211 1991
[35]
Leijten, F.R.M., Bolderdijk, J.W., Keizer, K., Gorira, M., van der Werff, E., Steg, L.: Factors that influence consumers' acceptance of future energy systems: the effects of adjustment type, production level, and price. Energ. Effi. 7, 973---985 2014
[36]
Hess, D.J.: Smart meters and public acceptance: comparative analysis and governance implications. Health Risk Soc. 163, 243---258 2014
[37]
Jazizadeh, F., Ghahramani, A., Becerik-Gerber, B., Kichkaylo, T., Orosz, M.: A human-building interaction framework for personalized thermal comfort driven systems in office buildings. J. Comput. Civil Eng. 281, 2---16 2014
[38]
Ramakrishna, A., Chang, Y.-H., Maheswaran, R.: An interactive web based spatio-temporal visualization system. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Li, B., Porikli, F., Zordan, V., Klosowski, J., Coquillart, S., Luo, X., Chen, M., Gotz, D. eds. ISVC 2013, Part II. LNCS, vol. 8034, pp. 673---680. Springer, Heidelberg 2013

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Proceedings of the Third International Conference on Distributed, Ambient, and Pervasive Interactions - Volume 9189
August 2015
682 pages
ISBN:9783319208039

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 02 August 2015

Author Tags

  1. Cyber-physical systems
  2. Energy efficiency
  3. Games
  4. Gamification
  5. Human factors
  6. Psychology

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media