[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-319-07617-1_53guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Soft Clustering Based on Hybrid Bayesian Networks in Socioecological Cartography

Published: 11 June 2014 Publication History

Abstract

The interactions between nature and society need new tools capable of dealing with the inherent complexity and heterogeneity of the territory. Traditional clustering methodologies have been applied to solve this problem. Although these return adequate results, soft clustering based on hybrid Bayesian networks, returns more detailed results. Moreover their probabilistic nature delivers additional advantages. The main contribution of this paper, is to apply this tool to obtain the socioecological cartography of a Mediterranean watershed. The results are compared to a traditional agglomerative clustering.

References

[1]
Domon, G., Gariepy, M., Bouchard, A.: Ecological cartography and land-use planning: Trends and perspectives. Geoforumä20, 69—82 (1989)
[2]
Anderies, J., Janssen, M., Ostom, E.: A framework to analyze the robustness of socio-ecological systems from an institutional perspective. Ecology & Societyää9(1), 1—18 (2004)
[3]
Folke, C.: Resilience: The emergence of a perspective for social-ecological systems analyses. Global Environmental Changeä16, 253—267 (2006)
[4]
Pasqualini, V., Pergent-Martini, C., Clabaut, P., Pergent, G.: Mapping of posidonia oceanica using aerial photographs and side scan sonar: Application of the island of corsica (france). Estuarine, Coastal and Shelf Scienceä47, 359—367 (1998)
[5]
Schmitz, M., Pineda, F., Castro, H., Aranzabal, I.D., Aguilera, P.: Cultural landscape and socioeconomic structure. Environmental value and demand for tourism in a Mediterranean territory. Consejería de Medio Ambiente. Junta de Andalucía, Sevilla (2005)
[6]
Ruiz-Labourdette, D., Martínez, F., Martín-López, B., Montes, C., Pineda, F.D.: Equilibrium of vegetation and climate at the european rear edge. a reference for climate change planning in mountainous mediterranean regions. Int. J. Biometeorolä55, 285—301 (2011)
[7]
Hawkins, C.V.: Landscape conservation trough residential subdivision bylaws: Explanations for local adoption. Landscape and Urban Planningä12, 141—148 (2014)
[8]
Jain, A.K., Murty, M.M., Flynn, P.J.: Data clustering: a review. ACM Computing Surveysä31(3), 264—323 (1999)
[9]
Aguilera, P.A., Fernández, A., Ropero, R.F., Molina, L.: Groundwater quality assessment using data clustering based on hybrid Bayesian networks. Stochastic Environmental Research & Risk Assessmentää27(2), 435—447 (2013)
[10]
Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer (2007)
[11]
Aguilera, P.A., Fernández, A., Fernández, R., Rumí, R., Salmerón, A.: Bayesian networks in environmental modelling. Environmental Modelling & Softwareää26, 1376—1388 (2011)
[12]
Uusitalo, L.: Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modellingä203, 312—318 (2007)
[13]
Lauritzen, S.L.: Propagation of probabilities, means and variances in mixed graphical association models. Journal of the American Statistical Associationä87, 1098—1108 (1992)
[14]
Moral, S., Rumí, R., Salmerón, A.: Mixtures of Truncated Exponentials in Hybrid Bayesian Networks. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol.ä2143, pp. 156—167. Springer, Heidelberg (2001)
[15]
Shenoy, P.P., West, J.C.: Inference in hybrid Bayesian networks using mixtures of polynomials. International Journal of Approximate Reasoningä52(5), 641—657 (2011)
[16]
Langseth, H., Nielsen, T.D., Rumí, R., Salmerón, A.: Mixtures of Truncated Basis Functions. International Journal of Approximate Reasoningä53(2), 212—227 (2012)
[17]
Dan, L., Yang, H., Liang, X.: Prediction analysis of a wastewater treatment system using a bayesian network. Environmental Modelling & Softwareää40, 140—150 (2013)
[18]
Rumí, R., Salmerón, A., Moral, S.: Estimating mixtures of truncated exponentials in hybrid Bayesian networks. Testä15, 397—421 (2006)
[19]
Rumí, R., Salmerón, A.: Approximate probability propagation with mixtures of truncated exponentials. International Journal of Approximate Reasoningä45, 191—210 (2007)
[20]
Cobb, B.R., Rumí, R., Salmerón, A.: Bayesian networks models with discrete and continuous variables. In: Lucas, P., Gámez, J.A., Salmerón, A. (eds.) Advances in Probabilistic Graphical Models. STUDFUZZ, vol.ä214, pp. 81—102. Springer, Heidelberg (2007)
[21]
Elvira-Consortium: Elvira: An Environment for Creating and Using Probabilistic Graphical Models. In: Proceedings of the First European Workshop on Probabilistic Graphical Models, pp. 222—230 (2002)
[22]
Anderberg, M.R.: Cluster Analysis for Applications. Academic Press (1973)
[23]
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley Interscience (2001)
[24]
Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Associationä82, 528—550 (1987)
[25]
Lauritzen, S.L.: The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysisä19, 191—201 (1995)
[26]
Gower, J.: A general coefficient of similarity and some of its properties. Biometricsä27, 857—874 (1971)
[27]
R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012) ISBN 3-900051-07-0
[28]
Rousseeuw, P.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math.ä20, 53—65 (1987)
[29]
ESRI: ArcMap Version 9.3. Environmental Systems Research Institute (ESRI), Redlands, CA (2006)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
HAIS 2014: Proceedings of the 9th International Conference on Hybrid Artificial Intelligence Systems - Volume 8480
June 2014
708 pages
ISBN:9783319076164
  • Editors:
  • Marios Polycarpou,
  • André Carvalho,
  • Jeng-Shyang Pan,
  • Michał Woźniak,
  • Héctor Quintian,
  • Emilio Corchado

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 11 June 2014

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media