[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-319-93387-0_17guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Minimising Communication in Honest-Majority MPC by Batchwise Multiplication Verification

Published: 02 July 2018 Publication History

Abstract

In this paper, we present two new and very communication-efficient protocols for maliciously secure multi-party computation over fields in the honest-majority setting with abort. Our first protocol improves a recent protocol by Lindell and Nof. Using the so far overlooked tool of batchwise multiplication verification, we speed up their technique for checking correctness of multiplications (with some other improvements), reducing communication by 2× to 7×. In particular, in the 3PC setting, each party sends only two field elements per multiplication. We also show how to achieve fairness, which Lindell and Nof left as an open problem. Our second protocol again applies batchwise multiplication verification, this time to perform 3PC by letting two parties perform the SPDZ protocol using triples generated by a third party and verified batchwise. In this protocol, each party sends only 43 field elements during the online phase and 53 field elements during the preprocessing phase.

References

[1]
Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Proceedings of CCS 2016. ACM (2016)
[2]
Ben-Sasson E, Fehr S, and Ostrovsky R Safavi-Naini R and Canetti R Near-linear unconditionally-secure multiparty computation with a dishonest minority Advances in Cryptology – CRYPTO 2012 2012 Heidelberg Springer 663-680
[3]
Canetti R Security and composition of multi-party cryptographic protocols J. Cryptol. 2000 13 1 143-202
[4]
Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of aggregate statistics. In: Proceedings of NSDI (2017)
[5]
Damgård I, Keller M, Larraia E, Pastro V, Scholl P, and Smart NP Crampton J, Jajodia S, and Mayes K Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits Computer Security – ESORICS 2013 2013 Heidelberg Springer 1-18
[6]
Damgård I and Nielsen JB Menezes A Scalable and unconditionally secure multiparty computation Advances in Cryptology - CRYPTO 2007 2007 Heidelberg Springer 572-590
[7]
Damgård, I., Orlandi, C., Simkin, M.: Yet another compiler for active security or: efficient MPC over arbitrary rings. Cryptology ePrint Archive, Report 2017/908 (2017). http://eprint.iacr.org/2017/908
[8]
Damgård I, Pastro V, Smart N, and Zakarias S Safavi-Naini R and Canetti R Multiparty computation from somewhat homomorphic encryption Advances in Cryptology – CRYPTO 2012 2012 Heidelberg Springer 643-662
[9]
Dolev D and Strong HR Authenticated algorithms for Byzantine agreement SIAM J. Comput. 1983 12 4 656-666
[10]
Fitzi M, Gisin N, Maurer U, and von Rotz O Knudsen LR Unconditional Byzantine agreement and multi-party computation secure against dishonest minorities from scratch Advances in Cryptology—EUROCRYPT 2002 2002 Heidelberg Springer 482-501
[11]
Furukawa J, Lindell Y, Nof A, and Weinstein O Coron J-S and Nielsen JB High-throughput secure three-party computation for malicious adversaries and an honest majority Advances in Cryptology – EUROCRYPT 2017 2017 Cham Springer 225-255
[12]
Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multiparty computations with applications to threshold cryptography. In: Proceedings of PODC (1998)
[13]
Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing of secure computation. In: Proceedings of CCSW 2014 (2014)
[14]
Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. Cryptology ePrint Archive, Report 2017/1230 (2017). https://eprint.iacr.org/2017/1230
[15]
Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols and security under composition. In: Proceedings of STOC 2006 (2006)
[16]
Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: Proceedings of CCS 2017. ACM (2017)
[17]
Lipmaa H and Toft T Fomin FV, Freivalds R, Kwiatkowska M, and Peleg D Secure equality and greater-than tests with sublinear online complexity Automata, Languages, and Programming 2013 Heidelberg Springer 645-656
[18]
Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: Proceedings of S&P (2017)
[19]
Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: Proceedings of S&P (2013)
[20]
Schoenmakers B, Veeningen M, and de Vreede N Manulis M, Sadeghi A-R, and Schneider S Trinocchio: privacy-preserving outsourcing by distributed verifiable computation Applied Cryptography and Network Security 2016 Cham Springer 346-366
[21]
Schwartz JT Fast probabilistic algorithms for verification of polynomial identities J. ACM 1980 27 4 701-717
[22]
Zippel R Ng EW Probabilistic algorithms for sparse polynomials Symbolic and Algebraic Computation 1979 Heidelberg Springer 216-226

Cited By

View all
  • (2023)Scalable Multiparty GarblingProceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security10.1145/3576915.3623132(2158-2172)Online publication date: 15-Nov-2023
  • (2023)Ramp Hyper-invertible Matrices and Their Applications to MPC ProtocolsAdvances in Cryptology – ASIACRYPT 202310.1007/978-981-99-8721-4_7(204-236)Online publication date: 4-Dec-2023
  • (2021)Honest Majority MPC with Abort with Minimal Online CommunicationProgress in Cryptology – LATINCRYPT 202110.1007/978-3-030-88238-9_22(453-472)Online publication date: 6-Oct-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Applied Cryptography and Network Security: 16th International Conference, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings
Jul 2018
714 pages
ISBN:978-3-319-93386-3
DOI:10.1007/978-3-319-93387-0

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 02 July 2018

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Scalable Multiparty GarblingProceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security10.1145/3576915.3623132(2158-2172)Online publication date: 15-Nov-2023
  • (2023)Ramp Hyper-invertible Matrices and Their Applications to MPC ProtocolsAdvances in Cryptology – ASIACRYPT 202310.1007/978-981-99-8721-4_7(204-236)Online publication date: 4-Dec-2023
  • (2021)Honest Majority MPC with Abort with Minimal Online CommunicationProgress in Cryptology – LATINCRYPT 202110.1007/978-3-030-88238-9_22(453-472)Online publication date: 6-Oct-2021
  • (2021)ATLAS: Efficient and Scalable MPC in the Honest Majority SettingAdvances in Cryptology – CRYPTO 202110.1007/978-3-030-84245-1_9(244-274)Online publication date: 16-Aug-2021
  • (2021)Fluid MPC: Secure Multiparty Computation with Dynamic ParticipantsAdvances in Cryptology – CRYPTO 202110.1007/978-3-030-84245-1_4(94-123)Online publication date: 16-Aug-2021
  • (2021)Unconditional Communication-Efficient MPC via Hall’s Marriage TheoremAdvances in Cryptology – CRYPTO 202110.1007/978-3-030-84245-1_10(275-304)Online publication date: 16-Aug-2021
  • (2021)Constant-Overhead Unconditionally Secure Multiparty Computation Over Binary FieldsAdvances in Cryptology – EUROCRYPT 202110.1007/978-3-030-77886-6_28(812-841)Online publication date: 17-Oct-2021
  • (2021)The More the Merrier: Reducing the Cost of Large Scale MPCAdvances in Cryptology – EUROCRYPT 202110.1007/978-3-030-77886-6_24(694-723)Online publication date: 17-Oct-2021
  • (2021)Order-C Secure Multiparty Computation for Highly Repetitive CircuitsAdvances in Cryptology – EUROCRYPT 202110.1007/978-3-030-77886-6_23(663-693)Online publication date: 17-Oct-2021
  • (2020)Efficient Fully Secure Computation via Distributed Zero-Knowledge ProofsAdvances in Cryptology – ASIACRYPT 202010.1007/978-3-030-64840-4_9(244-276)Online publication date: 7-Dec-2020
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media