A Fast and Efficient Algorithm for Filtering the Training Dataset
Abstract
References
Recommendations
DCPE co-training for classification
Co-training is a well-known semi-supervised learning technique that applies two basic learners to train the data source, which uses the most confident unlabeled data to augment labeled data in the learning process. In the paper, we use the diversity of ...
Editing training data for multi-label classification with the k-nearest neighbor rule
Multi-label classification allows instances to belong to several classes at once. It has received significant attention in machine learning and has found many real-world applications in recent years, such as text categorization, automatic video ...
Tri-Training: Exploiting Unlabeled Data Using Three Classifiers
In many practical data mining applications, such as Web page classification, unlabeled training examples are readily available, but labeled ones are fairly expensive to obtain. Therefore, semi-supervised learning algorithms such as co-training have ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Springer-Verlag
Berlin, Heidelberg
Publication History
Author Tags
Qualifiers
- Article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0