[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-031-29573-7_7guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Small Solutions for Real-World Symbolic Regression Using Denoising Autoencoder Genetic Programming

Published: 12 April 2023 Publication History

Abstract

Denoising Autoencoder Genetic Programming (DAE-GP) is a model-based evolutionary algorithm that uses denoising autoencoder long short-term memory networks as probabilistic model to replace the standard recombination and mutation operators of genetic programming (GP). In this paper, we use the DAE-GP to solve a set of nine standard real-world symbolic regression tasks. We compare the prediction quality of the DAE-GP to standard GP, geometric semantic GP (GSGP), and the gene-pool optimal mixing evolutionary algorithm for GP (GOMEA-GP), and find that the DAE-GP shows similar prediction quality using a much lower number of fitness evaluations than GSGP or GOMEA-GP. In addition, the DAE-GP consistently finds small solutions. The best candidate solutions of the DAE-GP are 69% smaller (median number of nodes) than the best candidate solutions found by standard GP. An analysis of the bias of the selection and variation step for both the DAE-GP and standard GP gives insight into why differences in solution size exist: the strong increase in solution size for standard GP is a result of both selection and variation bias. The results highlight that learning and sampling from a probabilistic model is a promising alternative to classic GP variation operators where the DAE-GP is able to generate small solutions for real-world symbolic regression tasks.

References

[1]
Brooks, T.F., Pope, D.S., Marcolini, M.A.: Airfoil self-noise and prediction, vol. 1218. In: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division (1989)
[3]
Cortez P, Cerdeira A, Almeida F, Matos T, and Reis J Modeling wine preferences by data mining from physicochemical properties Decis. Support Syst. 2009 47 4 547-553
[4]
Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
[5]
Fortin FA, De Rainville FM, Gardner MA, Parizeau M, and Gagńe C DEAP: evolutionary algorithms made easy J. Mach. Learn. Res. 2012 13 1 2171-2175
[6]
Gerritsma J, Onnink R, and Versluis A Geometry, resistance and stability of the delft systematic yacht hull series Int. Shipbuild. Prog. 1981 28 328 276-297
[7]
Harrison D Jr and Rubinfeld DL Hedonic housing prices and the demand for clean air J. Environ. Econ. Manag. 1978 5 1 81-102
[8]
Hasegawa, Y., Iba, H.: Estimation of Bayesian network for program generation. In: Proceedings of the Third Asian-Pacific Workshop on Genetic Programming, pp. 35–46. Hanoi, Vietnam (2006)
[9]
Hasegawa, Y., Iba, H.: Estimation of distribution algorithm based on probabilistic grammar with latent annotations. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), pp. 1043–1050. IEEE (2007).
[10]
Hasegawa Y and Iba H A Bayesian network approach to program generation IEEE Trans. Evol. Comput. 2008 12 6 750-764
[11]
Kim K, Shan Y, Nguyen XH, and McKay RI Probabilistic model building in genetic programming: a critical review Genet. Program Evolvable Mach. 2014 15 2 115-167
[12]
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations. San Diego, CA, USA (2015)
[13]
Koza JR Genetic Programming: On the Programming of Computers by Means of Natural Selection 1992 Cambridge, London MIT Press
[14]
La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016 (GECCO 2016), pp. 741–748. Association for Computing Machinery, New York, NY, USA (2016).
[15]
Martins, J.F.B.S., Oliveira, L.O.V.B., Miranda, L.F., Casadei, F., Pappa, G.L.: Solving the exponential growth of symbolic regression trees in geometric semantic genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2018), pp. 1151–1158. Association for Computing Machinery, New York, NY, USA (2018).
[16]
de Melo, V.V., Vargas, D.V., Banzhaf, W.: Batch tournament selection for genetic programming: the quality of lexicase, the speed of tournament. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2019), pp. 994–1002. Association for Computing Machinery, New York, NY, USA (2019).
[17]
Moraglio A, Krawiec K, and Johnson CG Coello CAC, Cutello V, Deb K, Forrest S, Nicosia G, and Pavone M Geometric semantic genetic programming Parallel Problem Solving from Nature - PPSN XII 2012 Heidelberg Springer 21-31
[18]
Ni J, Drieberg RH, and Rockett PI The use of an analytic quotient operator in genetic programming IEEE Trans. Evol. Comput. 2013 17 1 146-152
[19]
Orzechowski, P., La Cava, W., Moore, J.H.: Where are we now? A large benchmark study of recent symbolic regression methods. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2018), pp. 1183–1190. Association for Computing Machinery, New York, NY, USA (2018).
[20]
Probst M and Rothlauf F Harmless overfitting: using denoising autoencoders in estimation of distribution algorithms J. Mach. Learn. Res. 2020 21 78 1-31 http://jmlr.org/papers/v21/16-543.html
[21]
Ratle A and Sebag M Collet P, Fonlupt C, Hao J-K, Lutton E, and Schoenauer M Avoiding the bloat with stochastic grammar-based genetic programming Artificial Evolution 2002 Heidelberg Springer 255-266
[22]
Rothlauf, F.: Design of Modern Heuristics: Principles and Application, 1st edn. Springer, Heidelberg (2011).
[23]
Salustowicz R and Schmidhuber J Probabilistic incremental program evolution Evol. Comput. 1997 5 2 123-141
[24]
Schmidt, M., Lipson, H.: Age-fitness pareto optimization. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII, pp. 129–146. Springer, New York (2011).
[25]
Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: Proceedings of the 32nd International Conference on Machine Learning (ICML 2015), pp. 843–852. ACM, Lille, France (2015).
[26]
Tsanas A, Little MA, McSharry PE, and Ramig LO Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests IEEE Trans. Biomed. Eng. 2009 57 4 884-893
[27]
Tsanas A and Xifara A Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools Energy Build. 2012 49 560-567
[28]
Vaswani A et al. Attention is all you need Adv. Neural. Inf. Process. Syst. 2017 30 5998-6008
[29]
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning (ICML 2008), pp. 1096–1103. ACM, Helsinki, Finland (2008).
[30]
Virgolin M, Alderliesten T, Witteveen C, and Bosman PAN Improving model-based genetic programming for symbolic regression of small expressions Evol. Comput. 2021 29 2 211-237
[31]
Wittenberg, D.: Using denoising autoencoder genetic programming to control exploration and exploitation in search. In: Medvet, E., Pappa, G., Xue, B. (eds.) Genetic Programming (EuroGP 2022). LNCS, vol. 13223, pp. 102–117. Springer, Cham (2022).
[32]
Wittenberg, D., Rothlauf, F.: Denoising autoencoder genetic programming for real-world symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO 2022), pp. 612–614. Association for Computing Machinery, New York, NY, USA (2022).
[33]
Wittenberg, D., Rothlauf, F., Schweim, D.: DAE-GP: denoising autoencoder LSTM networks as probabilistic models in estimation of distribution genetic programming. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO 2020), pp. 1037–1045. ACM, New York, NY, USA (2020).
[34]
Wong, P.K., Lo, L.Y., Wong, M.L., Leung, K.S.: Grammar-based genetic programming with Bayesian network. In: IEEE Congress on Evolutionary Computation (CEC 2014), pp. 739–746. IEEE, Beijing, China (2014)
[35]
Wong, P.K., Lo, L.Y., Wong, M.L., Leung, K.S.: Grammar-based genetic programming with dependence learning and Bayesian network classifier. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2014), pp. 959–966. ACM, Vancouver, Canada (2014).
[36]
Yanai, K., Iba, H.: Estimation of distribution programming based on Bayesian network. In: IEEE Congress on Evolutionary Computation (CEC 2003), pp. 1618–1625. IEEE, Canberra, Australia (2003).
[37]
Yeh IC Modeling of strength of high-performance concrete using artificial neural networks Cem. Concr. Res. 1998 28 12 1797-1808

Cited By

View all
  • (2023)Pretraining Reduces Runtime in Denoising Autoencoder Genetic Programming by an Order of MagnitudeProceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3596332(2382-2385)Online publication date: 15-Jul-2023
  • (2023)Denoising autoencoder genetic programming: strategies to control exploration and exploitation in searchGenetic Programming and Evolvable Machines10.1007/s10710-023-09462-224:2Online publication date: 8-Nov-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Genetic Programming: 26th European Conference, EuroGP 2023, Held as Part of EvoStar 2023, Brno, Czech Republic, April 12–14, 2023, Proceedings
Apr 2023
365 pages
ISBN:978-3-031-29572-0
DOI:10.1007/978-3-031-29573-7
  • Editors:
  • Gisele Pappa,
  • Mario Giacobini,
  • Zdenek Vasicek

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 12 April 2023

Author Tags

  1. Genetic Programming
  2. Estimation of Distribution Algorithms
  3. Denoising Autoencoders
  4. Symbolic Regression

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Pretraining Reduces Runtime in Denoising Autoencoder Genetic Programming by an Order of MagnitudeProceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3596332(2382-2385)Online publication date: 15-Jul-2023
  • (2023)Denoising autoencoder genetic programming: strategies to control exploration and exploitation in searchGenetic Programming and Evolvable Machines10.1007/s10710-023-09462-224:2Online publication date: 8-Nov-2023

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media