Hybrid Transformer Based Feature Fusion for Self-Supervised Monocular Depth Estimation
Abstract
References
Recommendations
Transferring knowledge from monocular completion for self-supervised monocular depth estimation
AbstractMonocular depth estimation is a very challenging task in computer vision, with the goal to predict per-pixel depth from a single RGB image. Supervised learning methods require large amounts of depth measurement data, which are time-consuming and ...
Self-Supervised Monocular Depth Estimation via Binocular Geometric Correlation Learning
Monocular depth estimation aims to infer a depth map from a single image. Although supervised learning-based methods have achieved remarkable performance, they generally rely on a large amount of labor-intensively annotated data. Self-supervised methods, ...
SPDET: Edge-Aware Self-Supervised Panoramic Depth Estimation Transformer With Spherical Geometry
Panoramic depth estimation has become a hot topic in 3D reconstruction techniques with its omnidirectional spatial field of view. However, panoramic RGB-D datasets are difficult to obtain due to the lack of panoramic RGB-D cameras, thus limiting the ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
- Editors:
- Leonid Karlinsky,
- Tomer Michaeli,
- Ko Nishino
Publisher
Springer-Verlag
Berlin, Heidelberg
Publication History
Qualifiers
- Article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0