[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-031-19433-7_2guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Faithful Embeddings for EL++ Knowledge Bases

Published: 23 October 2022 Publication History

Abstract

Recently, increasing efforts are put into learning continual representations for symbolic knowledge bases (KBs). However, these approaches either only embed the data-level knowledge (ABox) or suffer from inherent limitations when dealing with concept-level knowledge (TBox), i.e., they cannot faithfully model the logical structure present in the KBs. We present BoxEL, a geometric KB embedding approach that allows for better capturing the logical structure (i.e., ABox and TBox axioms) in the description logic EL++. BoxEL models concepts in a KB as axis-parallel boxes that are suitable for modeling concept intersection, entities as points inside boxes, and relations between concepts/entities as affine transformations. We show theoretical guarantees (soundness) of BoxEL for preserving logical structure. Namely, the learned model of BoxEL embedding with loss 0 is a (logical) model of the KB. Experimental results on (plausible) subsumption reasonings and a real-world application–protein-protein prediction show that BoxEL outperforms traditional knowledge graph embedding methods as well as state-of-the-art EL++ embedding approaches.

References

[1]
Abboud, R., Ceylan, İ.İ., Lukasiewicz, T., Salvatori, T.: Boxe: A box embedding model for knowledge base completion. In: NeurIPS (2020)
[2]
Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope. In: IJCAI. vol. 5, pp. 364–369 (2005)
[3]
Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D., et al.: The description logic handbook: Theory, implementation and applications. Cambridge University Press (2003)
[4]
Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS. pp. 2787–2795 (2013)
[5]
Consortium, G.O.: Gene ontology consortium: going forward. Nucleic acids research 43(D1), D1049–D1056 (2015)
[6]
Dasgupta, S.S., Boratko, M., Zhang, D., Vilnis, L., Li, X., McCallum, A.: Improving local identifiability in probabilistic box embeddings. In: NeurIPS (2020)
[7]
Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: AAAI, pp. 1811–1818. AAAI Press (2018)
[8]
Gärdenfors, P.: Conceptual spaces - the geometry of thought. MIT Press (2000)
[9]
Garg, D., Ikbal, S., Srivastava, S.K., Vishwakarma, H., Karanam, H.P., Subramaniam, L.V.: Quantum embedding of knowledge for reasoning. In: NeurIPS, pp. 5595–5605 (2019)
[10]
Graua BC, Horrocksa I, Motika B, Parsiab B, Patel-Schneiderc P, and Sattlerb U Web semantics: science, services and agents on the world wide web Web Semantics: Sci. Serv. Agents World Wide Web 2008 6 309-322
[11]
Gutiérrez-Basulto, V., Schockaert, S.: From knowledge graph embedding to ontology embedding? an analysis of the compatibility between vector space representations and rules. In: KR, pp. 379–388. AAAI Press (2018)
[12]
Harris, M., et al.: The gene ontology (go) database and informatics resource nucleic acids research, 32. D258–D261 (2004)
[13]
Kazakov Y, Krötzsch M, and Simancik F The incredible ELK - from polynomial procedures to efficient reasoning with el ontologies J. Autom. Reason. 2014 53 1 1-61
[14]
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (Poster) (2015)
[15]
Kulmanov, M., Liu-Wei, W., Yan, Y., Hoehndorf, R.: EL embeddings: Geometric construction of models for the description logic EL++. In: IJCAI, pp. 6103–6109. ijcai.org (2019)
[16]
Kulmanov, M., Smaili, F.Z., Gao, X., Hoehndorf, R.: Semantic similarity and machine learning with ontologies. Briefings Bioinform. 22(4) (2021)
[17]
Li, X., Vilnis, L., Zhang, D., Boratko, M., McCallum, A.: Smoothing the geometry of probabilistic box embeddings. In: ICLR. OpenReview.net (2019)
[18]
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187. AAAI Press (2015)
[19]
Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. In: ICML. Proceedings of Machine Learning Research, vol. 70, pp. 2168–2178. PMLR (2017)
[20]
Mondal, S., Bhatia, S., Mutharaju, R.: Emel++: Embeddings for EL++ description logic. In: AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering. CEUR Workshop Proceedings, vol. 2846. CEUR-WS.org (2021)
[21]
Mungall CJ, Torniai C, Gkoutos GV, Lewis SE, and Haendel MA Uberon, an integrative multi-species anatomy ontology Genome Biol. 2012 13 1 1-20
[22]
Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816. Omnipress (2011)
[23]
Özçep, Ö.L., Leemhuis, M., Wolter, D.: Cone semantics for logics with negation. In: IJCAI, pp. 1820–1826. ijcai.org (2020)
[24]
Patel, D., Dasgupta, S.S., Boratko, M., Li, X., Vilnis, L., McCallum, A.: Representing joint hierarchies with box embeddings. In: Automated Knowledge Base Construction (2020). https://openreview.net/forum?id=J246NSqR_l
[25]
Rector, A.L., Rogers, J.E., Pole, P.: The galen high level ontology. In: Medical Informatics Europe’96, pp. 174–178. IOS Press (1996)
[26]
Ren, H., Hu, W., Leskovec, J.: Query2box: Reasoning over knowledge graphs in vector space using box embeddings. In: ICLR, OpenReview.net (2020)
[27]
Ren, H., Leskovec, J.: Beta embeddings for multi-hop logical reasoning in knowledge graphs. In: Neurips (2020)
[28]
Smaili FZ, Gao X, and Hoehndorf R Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations Bioinformatics 2018 34 13 i52-i60
[29]
Smaili FZ, Gao X, and Hoehndorf R Opa2vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction Bioinformatics 2019 35 12 2133-2140
[30]
Steigmiller A, Liebig T, and Glimm B Konclude: system description J. Web Semant. 2014 27–28 78-85
[31]
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML. JMLR Workshop and Conference Proceedings, vol. 48, pp. 2071–2080. JMLR.org (2016)
[32]
Vilnis, L., Li, X., Murty, S., McCallum, A.: Probabilistic embedding of knowledge graphs with box lattice measures. In: ACL (1), pp. 263–272. Association for Computational Linguistics (2018)
[33]
Wang Q, Mao Z, Wang B, and Guo L Knowledge graph embedding: a survey of approaches and applications IEEE Trans. Knowl. Data Eng. 2017 29 12 2724-2743
[34]
Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119. AAAI Press (2014)
[35]
Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (Poster) (2015)

Cited By

View all
  • (2024)FaithEL: Strongly TBox Faithful Knowledge Base Embeddings for Rules and Reasoning10.1007/978-3-031-72407-7_14(191-199)Online publication date: 17-Sep-2024
  • (2023)Reasoning beyond Triples: Recent Advances in Knowledge Graph EmbeddingsProceedings of the 32nd ACM International Conference on Information and Knowledge Management10.1145/3583780.3615294(5228-5231)Online publication date: 21-Oct-2023
  • (2023)Marrying Query Rewriting and Knowledge Graph EmbeddingsRules and Reasoning10.1007/978-3-031-45072-3_9(126-140)Online publication date: 18-Sep-2023

Index Terms

  1. Faithful Embeddings for EL++ Knowledge Bases
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        The Semantic Web – ISWC 2022: 21st International Semantic Web Conference, Virtual Event, October 23–27, 2022, Proceedings
        Oct 2022
        898 pages
        ISBN:978-3-031-19432-0
        DOI:10.1007/978-3-031-19433-7

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 23 October 2022

        Author Tags

        1. Ontologies
        2. Knowledge graph embeddings
        3. Semantic web

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 11 Dec 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)FaithEL: Strongly TBox Faithful Knowledge Base Embeddings for Rules and Reasoning10.1007/978-3-031-72407-7_14(191-199)Online publication date: 17-Sep-2024
        • (2023)Reasoning beyond Triples: Recent Advances in Knowledge Graph EmbeddingsProceedings of the 32nd ACM International Conference on Information and Knowledge Management10.1145/3583780.3615294(5228-5231)Online publication date: 21-Oct-2023
        • (2023)Marrying Query Rewriting and Knowledge Graph EmbeddingsRules and Reasoning10.1007/978-3-031-45072-3_9(126-140)Online publication date: 18-Sep-2023

        View Options

        View options

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media