[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-031-71170-1_8guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Enhancing Logical Tensor Networks: Integrating Uninorm-Based Fuzzy Operators for Complex Reasoning

Published: 10 September 2024 Publication History

Abstract

This paper enhances Logic Tensor Networks through the integration of uninorm based fuzzy operators. Uninorms, a class of operators that bridge the gap between t-norms and t-conorms, offer unparalleled flexibility and adaptability, making them ideal for modeling the complex, often ambiguous relationships inherent in real-world data. By embedding these operators into Logic Tensor Networks, we present a methodology that significantly increases the network’s capability to handle nuanced logical operations, thereby improving its applicability across different domains. Through a series of experiments, we demonstrate the efficacy of uninorm based operators in enhancing the precision of Logic Tensor Networks. Our findings suggest that the inclusion of uninorms not only broadens the scope of problems that Logic Tensor Networks can address but also deepens their reasoning capabilities, paving the way for more sophisticated artificial intelligence systems. This work lays a foundational stone for future research in the intersection of fuzzy logic and neural-symbolic computing, suggesting directions for further exploration and integration of fuzzy systems elements into Logic Tensor Networks.GitHub: https://github.com/IDA-FBK/UniLTN

References

[1]
Apriceno, G., Erculiani, L., Passerini, A.: A neuro-symbolic approach for non-intrusive load monitoring. In: Gal, K., Nowé, A., Nalepa, G.J., Fairstein, R., Radulescu, R. (eds.) ECAI 2023 - 26th European Conference on Artificial Intelligence, 30 September - 4 October 2023, Kraków, Poland - Including 12th Conference on Prestigious Applications of Intelligent Systems (PAIS 2023). Frontiers in Artificial Intelligence and Applications, vol. 372, pp. 3175–3181. IOS Press (2023).,
[2]
Apriceno, G., Passerini, A., Serafini, L.: A neuro-symbolic approach to structured event recognition. In: Combi, C., Eder, J., Reynolds, M. (eds.) 28th International Symposium on Temporal Representation and Reasoning, TIME 2021, 27-29 September 2021, Klagenfurt, Austria. LIPIcs, vol. 206, pp. 11:1–11:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).,
[3]
Apriceno, G., Passerini, A., Serafini, L.: A neuro-symbolic approach for real-world event recognition from weak supervision. In: Artikis, A., Posenato, R., Tonetta, S. (eds.) 29th International Symposium on Temporal Representation and Reasoning, TIME 2022, 7-9 November 2022, Virtual Conference. LIPIcs, vol. 247, pp. 12:1–12:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).,
[4]
Badreddine, S., Apriceno, G., Passerini, A., Serafini, L.: Interval logic tensor networks. CoRR abs/2303.17892 (2023).,
[5]
Badreddine S, Garcez A, Serafini L, and Spranger M Logic tensor networks Artif. Intell. 2020 303
[6]
Carraro, T.: Overcoming recommendation limitations with neuro-symbolic integration. In: Zhang, J., et al. (eds.) Proceedings of the 17th ACM Conference on Recommender Systems, RecSys 2023, Singapore, Singapore, 18-22 September 2023, pp. 1325–1331. ACM (2023).,
[7]
Carraro, T., Daniele, A., Aiolli, F., Serafini, L.: Logic tensor networks for top-n recommendation. In: Dovier, A., Montanari, A., Orlandini, A. (eds.) AIxIA 2022 - Advances in Artificial Intelligence - XXIst International Conference of the Italian Association for Artificial Intelligence, AIxIA 2022, Udine, Italy, 28 November - 2 December 2022, Proceedings. LNCS, vol. 13796, pp. 110–123. Springer (2022).,
[8]
Carraro, T., Daniele, A., Aiolli, F., Serafini, L.: Mitigating data sparsity via neuro-symbolic knowledge transfer. In: Goharian, N., et al. (eds.) Advances in Information Retrieval - 46th European Conference on Information Retrieval, ECIR 2024, Glasgow, UK, 24-28 March 2024, Proceedings, Part III. LNCS, vol. 14610, pp. 226–242. Springer (2024).
[9]
Donadello, I., Serafini, L., d’Avila Garcez, A.S.: Logic tensor networks for semantic image interpretation. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19-25 August 2017, pp. 1596–1602. ijcai.org (2017).,
[10]
Fodor, J.C., Yager, R.R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5(4), 411-427 (1997).,
[11]
Gupta, M., Qi, J.: Theory of t-norms and fuzzy inference methods. Fuzzy Sets Syst. 40(3), 431–450 (1991)., fuzzy Logic and Uncertainty Modelling
[12]
Hitzler, P., Sarker, M.K. (eds.): Neuro-Symbolic Artificial Intelligence: The State of the Art. In: Frontiers in Artificial Intelligence and Applications, vol. 342. IOS Press (2021).
[13]
Klement, E.P., Mesiar, R., Pap, E.: Triangular norms, vol. 8. Springer Science & Business Media (2013)
[14]
Manigrasso F, Miro FD, Morra L, and Lamberti F Farkaš I, Masulli P, Otte S, and Wermter S Faster-LTN: a neuro-symbolic, end-to-end object detection architecture Artificial Neural Networks and Machine Learning – ICANN 2021 2021 Cham Springer 40-52
[15]
Mas M, Monserrat M, and Torrens J Two types of implications derived from uninorms Fuzzy Sets Syst. 2007 158 23 2612-2626
[16]
Vilamala, M.R., et al.: Using deepproblog to perform complex event processing on an audio stream. CoRR abs/ arXiv: 2110.08090 (2021)
[17]
Zadeh LA Fuzzy sets Inf. Control 1965 8 3 338-353

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Neural-Symbolic Learning and Reasoning: 18th International Conference, NeSy 2024, Barcelona, Spain, September 9–12, 2024, Proceedings, Part II
Sep 2024
356 pages
ISBN:978-3-031-71169-5
DOI:10.1007/978-3-031-71170-1

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 10 September 2024

Author Tags

  1. Logic tensor network
  2. Fuzzy operators
  3. Uninorm

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media