[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-031-67868-4_1guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Subdirectly Irreducible and Semisimple Double Boolean Algebras

Published: 09 September 2024 Publication History

Abstract

Double Boolean algebras are algebras D̲=(D,,,¬,,,) of type (2, 2, 1, 1, 0, 0) introduced by Rudolf Wille to capture the equational theory of protoconcept algebras. A famous theorem of Birkhoff says that any variety is determined by its subdirectly irreducible members. In this work we give a construction that leads to a concrete embedding of double Boolean algebras into the protoconcept algebra. We characterize subdirectly irreducible, simple and semisimple double Boolean algebras.

References

[1]
Balbiani P.: Deciding the word problem in pure double Boolean algebras. J. Appl. Logic, pp. 260–273 (2012)
[2]
Burris S and Sankappanaver H A Course in Universal Algebra 1981 New York Springer
[3]
Davey B and Priestley H Introduction to Lattices and Order 2002 Cambridge Cambridge University Press
[4]
Ganter B and Wille R Formal Concept Analysis: Mathematical Foundations 1999 Heidelberg Springer
[5]
Gratzer G Lattice Theory: Foundation 2011 Heidelberg Birkhäuser
[6]
Howlader P., Banerjee M.: Remarks on prime ideal and representation theorem for double Boolean algebras, In: Valverde-Albacete, F.J., Trnecka, M. (eds.) CEUR, vol. 2668, pp. 83–94 (2020)
[7]
Howlader P., Banerjee M.: Topological representation of double Boolean algebra. Algebra Universalis (2023)
[8]
Kwuida L.: A Contextual generalization of Boolean algebras. Ph.D. thesis, TU Dresden, Shaker Verlag (2004)
[9]
Kwuida L.: Prime ideal theorem for double Boolean algebras. Discussiones Mathematicae - General Algebra and Applications, pp. 263–275 (2007)
[10]
Kwuida L.: A single axiom for Boolean algebras. Discret. Appl. Math. 249, 85–90 (2018)
[11]
Léa TJY, Temgoua ERA, and Kwuida L Braud A, Buzmakov A, Hanika T, and Le Ber F Filters, ideals and congruences on double boolean algebras Formal Concept Analysis 2021 Cham Springer 270-280
[12]
Vormbrock B.: The structure of double Boolean algebras. Ph.D. thesis, TU Darmstadt (2005) Shaker Verlag (2006)
[13]
Wille R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets Reidel, pp. 445–470 (1982)
[14]
Wille R Ganter B and Mineau GW Boolean concept logic Conceptual Structures: Logical, Linguistic, and Computational Issues 2000 Heidelberg Springer 317-331

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Conceptual Knowledge Structures: First International Joint Conference, CONCEPTS 2024, Cádiz, Spain, September 9–13, 2024, Proceedings
Sep 2024
341 pages
ISBN:978-3-031-67867-7
DOI:10.1007/978-3-031-67868-4

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 09 September 2024

Author Tags

  1. Protoconcept
  2. double Boolean algebra
  3. subdirect decomposition
  4. congruence
  5. filter
  6. ideal
  7. simplicity
  8. semisimplicity

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media