[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-031-49011-8_30guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Deep Learning-Based Tree Stem Segmentation for Robotic Eucalyptus Selective Thinning Operations

Published: 15 December 2023 Publication History

Abstract

Selective thinning is a crucial operation to reduce forest ignitable material, to control the eucalyptus species and maximise its profitability. The selection and removal of less vigorous stems allows the remaining stems to grow healthier and without competition for water, sunlight and nutrients. This operation is traditionally performed by a human operator and is time-intensive. This work simplifies selective thinning by removing the stem selection part from the human operator’s side using a computer vision algorithm. For this, two distinct datasets of eucalyptus stems (with and without foliage) were built and manually annotated, and three Deep Learning object detectors (YOLOv5, YOLOv7 and YOLOv8) were tested on real context images to perform instance segmentation. YOLOv8 was the best at this task, achieving an Average Precision of 74% and 66% on non-leafy and leafy test datasets, respectively. A computer vision algorithm for automatic stem selection was developed based on the YOLOv8 segmentation output. The algorithm managed to get a Precision above 97% and a 81% Recall. The findings of this work can have a positive impact in future developments for automatising selective thinning in forested contexts.

References

[1]
Bishop CM Pattern Recognition and Machine Learning 2006 Berlin, Heidelberg Springer
[2]
Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: real-time instance segmentation. In: ICCV (2019)
[3]
Bolya D, Zhou C, Xiao F, and Lee YJ Yolact++ better real-time instance segmentation IEEE Trans. Pattern Anal. Mach. Intell. 2022 44 2 1108-1121
[4]
Cai Z and Vasconcelos N Cascade R-CNN: high quality object detection and instance segmentation IEEE Trans. Pattern Anal. Mach. Intell. 2021 43 5 1483-1498
[5]
Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1280–1289 (2022).
[6]
da Silva, D.Q., dos Santos, F.N., Filipe, V., Sousa, A.J.: Tree trunks cross-platform detection using deep learning strategies for forestry operations. In: Tardioli, D., Matellán, V., Heredia, G., Silva, M.F., Marques, L. (eds.) ROBOT2022: fifth Iberian Robotics Conference, pp. 40–52. Springer International Publishing, Cham (2023).
[7]
da Silva, D.Q., dos Santos, F.N., Filipe, V., Sousa, A.J., Oliveira, P.M.: Edge AI-based tree trunk detection for forestry monitoring robotics. Robotics 11(6) (2022).
[8]
da Silva, D.Q., dos Santos, F.N., Sousa, A.J., Filipe, V., Boaventura-Cunha, J.: Unimodal and multimodal perception for forest management: review and dataset. Computation 9(12) (2021).
[9]
da Silva, D.Q., dos Santos, F.N., Sousa, A.J., Filipe, V.: Visible and thermal image-based trunk detection with deep learning for forestry mobile robotics. J. Imaging 7(9) (2021).
[10]
FAO: The State of the World’s Forests 2022, p. 28. FAO, Rome (2022)
[11]
Ferreira, D., Morais, S.: Seleção de varas - Manual técnico de apoio á gestão de talhadias (2022)
[12]
Fortin, J.M., Gamache, O., Grondin, V., Pomerleau, F., Giguère, P.: Instance segmentation for autonomous log grasping in forestry operations. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6064–6071 (2022).
[13]
Fritz, A., Kattenborn, T., Koch, B.: UAV-based photogrammetric point clouds—Tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W2(September), pp. 141–146 (2013).
[14]
Gomide, L., Mello, J., Acerbi Júnior, F., Scolforo, J.: Automated selective thinning via multicriteria maetaheuristic procedure. Scientia Forestalis/Forest Sci. 42, 299–306 (2014)
[15]
Grondin, V., Fortin, J.M., Pomerleau, F., Giguère, P.: Tree detection and diameter estimation based on deep learning. Forest.: Int. J. Forest Res. (2022)
[16]
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the International Conference on Computer Vision (ICCV) (2017)
[17]
Jocher, G.: YOLOv5 by Ultralytics (2020).
[18]
Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (2023)
[19]
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)
[20]
Mokroš, M., Mikita, T., Singh, A., Tomaštík, J., Chudá, J., Wȩżyk, P., Kuželka, K., Surový, P., Klimánek, M., Ziȩba-Kulawik, K., Bobrowski, R., Liang, X.: Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. Int. J. Appl. Earth Observ. Geoinf. 104 (2021).
[21]
Söderbergh I and Ledermann T Algorithms for simulating thinning and harvesting in five European individual-tree growth simulators: a review Comput. Electron. Agric. 2003 39 2 115-140
[22]
Vestlund K and Hellström T Requirements and system design for a robot performing selective cleaning in young forest stands J. Terrramech. 2006 43 4 505-525
[23]
Vestlund, K., Nordfjell, T., Eliasson, L.: Comparison of human and computer-based selective cleaning. Silva Fennica Monogr. 39(4), 509–523 (2005).
[24]
Vestlund, K., Nordfjell, T., Eliasson, L., Karlsson, A.: A decision support system for selective cleaning. Silva Fennica 40(2), 271–289 (2006).
[25]
Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (2022). arXiv:2207.02696
[26]
Zhen Z, Quackenbush LJ, and Zhang L Trends in automatic individual tree crown detection and delineation-evolution of LiDAR data Remote Sens. 2016 8 4 1-26

Index Terms

  1. Deep Learning-Based Tree Stem Segmentation for Robotic Eucalyptus Selective Thinning Operations
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Please enable JavaScript to view thecomments powered by Disqus.

            Information & Contributors

            Information

            Published In

            cover image Guide Proceedings
            Progress in Artificial Intelligence: 22nd EPIA Conference on Artificial Intelligence, EPIA 2023, Faial Island, Azores, September 5–8, 2023, Proceedings, Part II
            Sep 2023
            605 pages
            ISBN:978-3-031-49010-1
            DOI:10.1007/978-3-031-49011-8
            • Editors:
            • Nuno Moniz,
            • Zita Vale,
            • José Cascalho,
            • Catarina Silva,
            • Raquel Sebastião

            Publisher

            Springer-Verlag

            Berlin, Heidelberg

            Publication History

            Published: 15 December 2023

            Author Tags

            1. Computer vision
            2. Deep learning
            3. Forestry
            4. Instance segmentation
            5. Selective thinning

            Qualifiers

            • Article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0
            Reflects downloads up to 23 Feb 2025

            Other Metrics

            Citations

            View Options

            View options

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media