[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-031-49011-8_27guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Sound-Based Anomalies Detection in Agricultural Robotics Application

Published: 15 December 2023 Publication History

Abstract

Agricultural robots are exposed to adverse conditions reducing the components’ lifetime. To reduce the number of inspection, repair and maintenance activities, we propose using audio-based systems to diagnose and detect anomalies in these robots. Audio-based systems are non-destructive/intrusive solutions. Besides, it provides a significant amount of data to diagnose problems and for a wiser scheduler for preventive activities. So, in this work, we installed two microphones in an agricultural robot with a mowing tool. Real audio data was collected with the robotic mowing tool operating in several conditions and stages. Besides, a Sound-based Anomalies Detector (SAD) is proposed and tested with this dataset. The SAD considers a short-time Fourier transform (STFT) computation stage connected to a Support Vector Machine (SVM) classifier. The results with the collected dataset showed an F1 score between 95% and 100% in detecting anomalies in a mowing robot operation.

References

[1]
Baltazar, A.: Dataset for Sound-based Anomalies Detection in Agricultural Robotics Application (Oct2022), https://doi.org/10.5281/zenodo.7194547
[2]
Bayram, B., Duman, T.B., Ince, G.: Real time detection of acoustic anomalies in industrial processes using sequential autoencoders. Expert Syst. 38.
[3]
Becker, P., Roth, C., Roennau, A., Dillmann, R.: Acoustic anomaly detection in additive manufacturing with long short-term memory neural networks (2020).
[4]
Chachada, S., Kuo, C.C.J.: Environmental sound recognition: a survey. In: 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1–9 (2013).
[5]
Gribonval, R.: Linear Time-Frequency Analysis I: Fourier-Type Representations, pp. 61–91 (2010).
[6]
Henze, D., Gorishti, K., Bruegge, B., Simen, J.P.: Audioforesight: a process model for audio predictive maintenance in industrial environments. In: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp. 352–357 (2019).
[7]
Huang, Z., Shiigi, T., Tsay, L.W.J., Nakanishi, H., Suzuki, T., Ogawa, Y., Naoshi, K.: A sound-based positioning system with centimeter accuracy for mobile robots in a greenhouse using frequency shift compensation. Comput. Electron. Agric. 187, 106235 (2021), https://www.sciencedirect.com/science/article/pii/S0168169921002520
[8]
Oppenheim AV and Schafer RW Discrete-Time Signal Processing 2009 3 USA Prentice Hall Press
[9]
Pandiyan, V., Prost, J., Vorlaufer, G., Varga, M., Wasmer, K.: Identification of abnormal tribological regimes using a microphone and semi-supervised machine-learning algorithm 10, 583–596 (2021).
[10]
Park, D., Kim, H., Kemp, C.C.: Multimodal anomaly detection for assistive robots. Auton. Robots 43(3), 611–629 (2019)., https://doi.org/10.1007/s10514-018-9733-6
[11]
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, and Duchesnay E Scikit-learn: machine learning in Python J. Mach. Learn. Res. 2011 12 2825-2830
[12]
Rocha, F., Garcia, G., Pereira, R., Faria, H., Silva, T., Andrade, R., Barbosa, E., Santos, A., da Cruz, E., Andrade, W., Serrantola, W., Moura, L., Azpúrua, H., Franca, A., Pessin, G., Freitas, G., Costa, R., Lizarralde, F.: Rosi: A robotic system for harsh outdoor industrial inspection—system design and applications. J. Intell. Robot. Syst. 103 (2021).
[13]
Scipy: scipy.signal.stft - SciPy v1.9.1 Manual, https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.stft.html. Accessed 03 Oct 2021
[14]
Seo CB, Lee G, Lee Y, and Seo SH Kim H Echo-guard: acoustic-based anomaly detection system for smart manufacturing environments Information Security Applications 2021 Cham Springer International Publishing 64-75
[15]
Tanuska, P., Spendla, L., Kebisek, M., Ďuriš, R., Strémy, M.: Smart anomaly detection and prediction for assembly process maintenance in compliance with industry 4.0. Sensors 21, 2376 (2021).
[16]
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and Composing Robust Features with Denoising Autoencoders, pp. 1096–1103. ICML ’08, Association for Computing Machinery, New York, NY, USA (2008)., https://doi.org/10.1145/1390156.1390294
[17]
Widodo, S., Shiigi, T., Hayashi, N., Kikuchi, H., Yanagida, K., Nakatsuchi, Y., Ogawa, Y., Kondo, N.: Moving object localization using sound-based positioning system with doppler shift compensation. Robotics 2(2), 36–53 (2013), https://www.mdpi.com/2218-6581/2/2/36
[18]
Wüstrich, L., Schröder, L., Pahl, M.O.: Cyber-physical anomaly detection for ICS. In: 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 950–955 (2021)
[19]
Yoo, Y., Lee, C.Y., Zhang, B.T.: Multimodal anomaly detection based on deep auto-encoder for object slip perception of mobile manipulation robots. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 11443–11449 (2021).
[20]
Yun, H., Kim, H., Jeong, Y., Jun, M.: Autoencoder-based anomaly detection of industrial robot arm using stethoscope based internal sound sensor. J. Intell. Manuf. 1–18 (2021).

Index Terms

  1. Sound-Based Anomalies Detection in Agricultural Robotics Application
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        Progress in Artificial Intelligence: 22nd EPIA Conference on Artificial Intelligence, EPIA 2023, Faial Island, Azores, September 5–8, 2023, Proceedings, Part II
        Sep 2023
        605 pages
        ISBN:978-3-031-49010-1
        DOI:10.1007/978-3-031-49011-8
        • Editors:
        • Nuno Moniz,
        • Zita Vale,
        • José Cascalho,
        • Catarina Silva,
        • Raquel Sebastião

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 15 December 2023

        Author Tags

        1. Anomalies Detection
        2. Mowing
        3. Sound-based
        4. STFT

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 23 Feb 2025

        Other Metrics

        Citations

        View Options

        View options

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media