[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-031-48593-0_12guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

TON-ViT: A Neuro-Symbolic AI Based on Task Oriented Network with a Vision Transformer

Published: 02 December 2023 Publication History

Abstract

The objective of this paper is to present a neuro-symbolic AI based technique to represent field-medicine knowledge, referred as to TON-ViT. TON-ViT integrates a Deep Learning Model with an explicit symbolic manipulation, a task graph. This task graph describes the steps of each trauma resuscitation as denoted by a verb and noun pair. Through this representation, symbolic processing and manipulation on task graphs, we can find stereotypical procedures, regardless of style of the performer. Furthermore, we can use this technique to find differences in styles, errors, shortcuts and generate procedures never seen before. When used in combination with a transformer, it can help recognize actions in egocentric vision datasets. Last, through symbolic manipulations on the graph, it is possible to generate medical knowledge which the model has not seen before. We present preliminary results after testing the TON-ViT with the Trauma Thompson Dataset.

References

[1]
Fensel, D., et al.: Introduction: what is a knowledge graph? In: Knowledge Graphs, pp. 1–10. Springer, Cham (2020).
[2]
Zou, X.: A survey on application of knowledge graph. J. Phys. Conf. Ser. 1487(1), 012016 (2020).
[3]
Yang, S., Zou, L., Wang, Z., Yan, J., Wen, J.-R.: Efficiently answering technical questions—a knowledge graph approach. Proc. AAAI Conf. Artif. Intell. 31(1),(2017).
[4]
Liew, C.Y., Labadin, J., Kok, W.C., Eze, M.O.: A methodology framework for bipartite network modeling. Appl. Netw. Sci. 8(1), 6 (2023).
[5]
Li, Z., et al.: Temporal knowledge graph reasoning based on evolutional representation learning. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 408–417. ACM (2021). ISBN 978-1-4503-8037-9.
[6]
Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., He, Q.: A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. 34(8), 3549–3568 (2022).
[7]
Wang, X., et al.: Learning intents behind interactions with knowledge graph for recommendation. In: Proceedings of the Web Conference 2021, pp. 878–887. ACM (2021). ISBN 978-1-4503-8312-7.
[8]
Chen, H., Luo, X.: An automatic literature knowledge graph and reasoning network modeling framework based on ontology and natural language processing. Adv. Eng. Informatics 42, 100959 (2019).
[9]
Peña, J., Rochat, Y.: Bipartite graphs as models of population structures in evolutionary multiplayer games. PLoS ONE 7(9), e44514 (2012).
[10]
Paulius, D., Huang, Y., Milton, R., Buchanan, W.D., Sam, J., Sun, Y.: Functional object-oriented network for manipulation learning. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2655–2662.
[11]
Tiddi, I., Schlobach, S.: Knowledge graphs as tools for explainable machine learning: a survey. Artif. Intell. 302, 103627 (2022).
[12]
Marino, K., Salakhutdinov, R., Gupta, A.: The more you know: using knowledge graphs for image classification. arXiv preprint arXiv:1612.04844 (2017)
[13]
Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semantic Web 8(3), 489–508 (2016).
[14]
Chaudhri, V.K., et al.: Knowledge graphs: introduction, history, and perspectives. AI Magazine 43(1), 17–29 (2022).
[15]
Lecue, F.: On the role of knowledge graphs in explainable AI. Semantic Web 11(1), 41–51 (2020).
[16]
Zhang, W., Paudel, B., Zhang, W., Bernstein, A., Chen, H.: Interaction embeddings for prediction and explanation in knowledge graphs. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 96–104. ACM (2019). ISBN 978-1-4503-5940-5.
[17]
Manghani, K.: Quality assurance: importance of systems and standard operating procedures. Perspect. Clin. Res. 2(1), 34 (2011).
[18]
Hitzler, P., Eberhart, A., Ebrahimi, M., Sarker, M.K., Zhou, L.: Neuro-symbolic approaches in artificial intelligence. Natl. Sci. Rev. 9(6), nwac035 (2022).
[19]
Hitzler, P.: Some advances regarding ontologies and neuro-symbolic artificial intelligence. In: Brazdil, P., van Rijn, J.N., Gouk, H., Mohr, F. (eds.) ECMLPKDD Workshop on Meta-Knowledge Transfer, volume 191 of Proceedings of Machine Learning Research, pp. 8–10. PMLR (2022). www.proceedings.mlr.press/v191/hitzler22a.html
[20]
Xie, X., Kersting, K., Neider, D.: Neuro-symbolic verification of deep neural networks. arXiv preprint arXiv:2203.00938 (2022)
[21]
Hamilton, K., Nayak, A., Božić, B., Longo, L.: Is Neuro-symbolic AI Meeting Its Promises in Natural Language Processing? A Structured Review, pp. 1–42 (2022). www.medra.org/servlet/aliasResolver?alias=iospress &doi=10.3233/SW-223228
[22]
Oltramari, A., Francis, J., Henson, C., Ma, K., Wickramarachchi, R.: Neuro-symbolic architectures for context understanding. arXiv preprint arxiv.org/abs/2003.04707 (2020). Publisher: arXiv Version Number: 1
[23]
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2021)
[24]
Pan, X., Ye, T., Han, D., Song, S., Huang, G.: Contrastive language-image pre-training with knowledge graphs. arXiv preprint arXiv:2210.08901 (2022)
[25]
Zhao, H., Torralba, A., Torresani, L., Yan, Z.: HACS: human action clips and segments dataset for recognition and temporal localization. arXiv preprint arXiv:1712.09374 (2019)
[26]
Rao, T.S., Radhakrishnan, R., Andrade, C.: Standard operating procedures for clinical practice. Ind. J. Psychiatry 53(1), 1–3 (2011).

Cited By

View all
  • (2023)Overview of the Trauma THOMPSON Challenge at MICCAI 2023AI for Brain Lesion Detection and Trauma Video Action Recognition10.1007/978-3-031-71626-3_7(47-60)Online publication date: 13-Oct-2023

Index Terms

  1. TON-ViT: A Neuro-Symbolic AI Based on Task Oriented Network with a Vision Transformer
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Guide Proceedings
      Medical Image Understanding and Analysis: 27th Annual Conference, MIUA 2023, Aberdeen, UK, July 19–21, 2023, Proceedings
      Jul 2023
      345 pages
      ISBN:978-3-031-48592-3
      DOI:10.1007/978-3-031-48593-0
      • Editors:
      • Gordon Waiter,
      • Tryphon Lambrou,
      • Georgios Leontidis,
      • Nir Oren,
      • Teresa Morris,
      • Sharon Gordon

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 02 December 2023

      Author Tags

      1. task graph
      2. knowledge graph
      3. semantic understanding
      4. vision transformer
      5. neuro-symbolic AI
      6. medical procedures

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 23 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Overview of the Trauma THOMPSON Challenge at MICCAI 2023AI for Brain Lesion Detection and Trauma Video Action Recognition10.1007/978-3-031-71626-3_7(47-60)Online publication date: 13-Oct-2023

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media