[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-030-93663-1_12guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Generating Longitudinal Synthetic EHR Data with Recurrent Autoencoders and Generative Adversarial Networks

Published: 20 August 2021 Publication History

Abstract

Synthetic electronic health records (EHR) can facilitate effective use of clinical data in software development, medical education, and medical research without the concerns of data privacy. We propose a novel Generative Adversarial Network (GAN) approach, called Longitudinal GAN (LongGAN), that can generate synthetic longitudinal EHR data. LongGAN employs a recurrent autoencoder and the Wasserstein GAN Gradient Penalty (WGAN-GP) architecture with conditional inputs. We evaluate LongGAN with the task of generating training data for machine/deep learning methods. Our experiments show that predictive models trained with synthetic data from LongGAN achieve comparable performance to those trained with real data. Moreover, these models have up to 0.27 higher AUROC and up to 0.21 higher AUPRC values than models trained with synthetic data from RCGAN and TimeGAN, the two most relevant methods for longitudinal data generation. We also demonstrate that LongGAN is able to preserve patient privacy in a given attribute disclosure attack setting.

References

[1]
Rothstein MA Is deidentification sufficient to protect health privacy in research? Am J Bioeth. 2010 10 9 3-11
[2]
Foraker RE, Yu SC, Gupta A, Michelson AP, Pineda Soto JA, Colvin R, et al. Spot the difference: Comparing results of analyses from real patient data and synthetic derivatives JAMIA Open. 2020 3 4 557-566
[3]
Benaim AR et al. Analyzing medical research results based on synthetic data and their relation to real data results: Systematic comparison from five observational studies JMIR Med. Inform. 2020 8 2 e16492
[4]
Guo, A., Foraker, R.E., MacGregor, R.M., Masood, F.M., Cupps, B.P., Pasque, M.K.: The use of synthetic electronic health record data and deep learning to improve timing of high-risk heart failure surgical intervention by predicting proximity to catastrophic decompensation. Front. Digit. Health 44 (2020)
[5]
Che, Z., Cheng, Y., Zhai, S., Sun, Z., Liu, Y.: Boosting deep learning risk prediction with generative adversarial networks for electronic health records. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 787–92 (2017)
[6]
Walonoski JA, Kramer M, Nichols J, Quina A, Moesel C, Hall D, et al. Synthea: an approach, method, and software mechanism for generating synthetic patients and the synthetic electronic health care record J. Am. Med. Inf. Assoc. JAMIA. 2018 25 230-238
[7]
Dube K and Gallagher T Gibbons J and MacCaull W Approach and Method for Generating Realistic Synthetic Electronic Healthcare Records for Secondary Use Foundations of health information engineering and systems 2014 Heidelberg Springer 69-86
[8]
Goncalves, A., Ray, P., Soper, B., Stevens, J., Coyle, L., Sales, A.P.: Generation and evaluation of synthetic patient data. BMC Med. Res. Method. 20(1), 1–40 (2020)
[9]
McLachlan S, Dube K, Gallagher T, Simmonds JA, Fenton N, et al. Cliquet Jr. A et al. Realistic Synthetic Data Generation: The ATEN Framework Biomedical engineering systems and technologies 2019 Cham Springer 497-523
[10]
Pollack, A.H., Simon, T.D., Snyder, J., Pratt, W.: Creating synthetic patient data to support the design and evaluation of novel health information technology. J. Biomed. Inf. 95, 103201 (2019)
[11]
Walonoski, J., et al.: Synthe‚ novel coronavirus (covid-19) model and synthetic data set. Intell. Based Med. 1, 100007 (2020)
[12]
Hochreiter S and Schmidhuber J Long short-term memory Neural Comput. 1997 9 1735-1780
[13]
Dong X, et al.: Identifying risk of opioid use disorder for patients taking opioid medications with deep learning. arXiv preprint arXiv:201004589 (2020)
[14]
Dong, X., et al.: Predicting opioid overdose risk of patients with opioid prescriptions using electronic health records based on temporal deep learning. J. Biomed. Inf. 116, 103725 (2021)
[15]
Rashidian S et al. Detecting miscoded diabetes diagnosis codes in electronic health records for quality improvement: temporal deep learning approach JMIR Med. Inform. 2020 8 12 e22649
[16]
Tao, M., Tang, H., Wu, S., Sebe, N., Wu, F., Jing, X.: Df-gan: deep fusion generative adversarial networks for text-to-image synthesis. ArXiv. abs/2008.05865 (2020)
[17]
Clark, A., Donahue, J., Simonyan, K.: Adversarial video generation on complex datasets. arXiv: Computer Vision and Pattern Recognition (2019)
[18]
Engel, J., Agrawal, K.K., Chen, S., Gulrajani, I., Donahue, C., Roberts, A.: Gansynth: adversarial neural audio synthesis. ArXiv; abs/1902.08710 (2019)
[19]
Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014).
[20]
Choi, E., Biswal, S., Malin, B., Duke, J., Stewart, W., Sun, J.: Generating multi-label discrete electronic health records using generative adversarial networks. ArXiv; abs/1703.06490 (2017)
[21]
Rashidian, S., et al.: SMOOTH-GAN: towards sharp and smooth synthetic ehr data generation. In: Michalowski, M., Moskovitch, R. (eds.) Artificial Intelligence in Medicine. AIME 2020. Lecture Notes in Computer Science, vol. 12299. Springer, Cham (2020)
[22]
Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with recurrent conditional GANs. ArXiv. abs/1706.02633 (2017)
[23]
Yoon, J., Jarrett, D., Schaar, M.V.D.: Time-series generative adversarial networks. In: NeurIPS (2019)
[24]
Lee D, Yu H, Jiang X, Rogith D, Gudala M, Tejani M, et al. Generating sequential electronic health records using dual adversarial autoencoder J. Am. Med. Inform. Assoc. 2020 27 9 1411-1419
[25]
Jordon, J., Yoon, J., Schaar, M.V.D.: Pate-gan: generating synthetic data with differential privacy guarantees. In: ICLR (2019)
[26]
Baowaly MK, Lin C, Liu C-L, and Chen K-T Synthesizing electronic health records using improved generative adversarial networks J. Am. Med. Inform. Assoc. 2019 26 228 41
[27]
Yoon, J., Drumright, L.N., Van Der Schaar, M.: Anonymization through data synthesis using generative adversarial networks (ads-gan). IEEE J. Biomed. Health Informatics. 24(8), 2378–2388
[28]
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein gans. In: NIPS (2017)
[29]
Nguyen HD, Tran KP, Thomassey S, and Hamad M Forecasting and anomaly detection approaches using LSTM and LSTM autoencoder techniques with the applications in supply chain management Int. J. Inf. Manag. 2021 57 102282
[30]
Chawla, A., Lee, B., Jacob, P., Fallon, S.: Bidirectional LSTM autoencoder for sequence based anomaly detection in cyber security. Int. J. Simulation: Syst., Sci. Technol. (2019)
[31]
Wong, T., Luo, Z.: Recurrent auto-encoder model for multidimensional time series representation (2018)
[32]
Mirza, M, Osindero, S.: Conditional generative adversarial nets. ArXiv. abs/1411.1784 (2014)
[33]
Al-Shawwa B, Glynn E, Hoffman MA, Ehsan Z, and Ingram DG Outpatient health care utilization for sleep disorders in the cerner health facts database J. Clin. Sleep Med. 2021 17 2 203-209
[34]
Petrick JL, Nguyen T, and Cook MB Temporal trends of esophageal disorders by age in the cerner health facts database Ann. Epidemiol. 2016 26 2 151-4.e4
[35]
DeShazo, J.P., Hoffman, M.: A comparison of a multistate inpatient ehr database to the hcup nationwide inpatient sample. BMC Health Services Res. 15(1), 1–8 (2015)
[36]
Hripcsak G, Ryan PB, Duke JD, Shah NH, Park RW, Huser V, et al. Characterizing treatment pathways at scale using the ohdsi network Proc Natl Acad Sci U S A. 2016 113 27 7329-7336
[37]
Shukla, S.N., Marlin, B.M.: Interpolation-prediction networks for irregularly sampled time series. ArXiv ;abs/1909.07782 (2019)
[38]
Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help? In: NeurIPS (2019)
[39]
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in python J. Mach. Learn. Res. 2011 12 2825-2830
[40]
Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI (2016)
[41]
Oliphant, T.E.: Guide to NumPy (2015)
[42]
McKinney, W.: Data structures for statistical computing in python (2010)
[43]
Virtanen, P., et al.: Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. Method. 17(3), 261–272 (2020).
[44]
Matwin, S., Nin, J., Sehatkar, M., Szapiro, T.: A review of attribute disclosure control. In: Navarro-Arribas G., Torra V. (eds.) Advanced Research in Data Privacy. Studies in Computational Intelligence, vol. 567. Springer, Cham (2015)
[45]
Surendra H and MohanH S A review of synthetic data generation methods for privacy preserving data publishing Int. J. Sci. Technol. Res. 2017 6 95-101
[46]
Hittmeir, M., Mayer, R., Ekelhart, A.: A baseline for attribute disclosure risk in synthetic data. In: Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy (2020)
[47]
Stadler, T., Oprisanu, B., Troncoso, C.: Synthetic data - a privacy mirage. ArXiv. abs/2011.07018 (2020)
[48]
Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: ICML (2013)
[49]
García-Laencina PJ, Sancho-Gómez J, and Figueiras-Vidal AR Pattern classification with missing data: A review Neural Comput. Appl. 2009 19 263-282
[50]
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., et al.: Attention is all you need. ArXiv. abs/1706.03762 (2017)
[51]
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al.: Roberta: a robustly optimized bert pretraining approach. ArXiv. abs/1907.11692 (2019)
[52]
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)
[53]
Choi, K., Hawthorne, C., Simon, I., Dinculescu, M., Engel, J.: Encoding musical style with transformer autoencoders. In: ICML (2020)
[54]
Fang, L., Zeng, T., Liu, C.C., Bo, L., Dong, W., Chen, C.: Transformer-based conditional variational autoencoder for controllable story generation. ArXiv abs/2101.00828 (2021)
[55]
Toreini, E., et al.: Technologies for trustworthy machine learning: A survey in a socio-technical context. ArXiv. abs/2007.08911 (2020)
[56]
Dwork C and Roth A The algorithmic foundations of differential privacy Found Trends Theor. Comput. Sci. 2014 9 211-407

Cited By

View all

Index Terms

  1. Generating Longitudinal Synthetic EHR Data with Recurrent Autoencoders and Generative Adversarial Networks
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Guide Proceedings
          Heterogeneous Data Management, Polystores, and Analytics for Healthcare: VLDB Workshops, Poly 2021 and DMAH 2021, Virtual Event, August 20, 2021, Revised Selected Papers
          Aug 2021
          191 pages
          ISBN:978-3-030-93662-4
          DOI:10.1007/978-3-030-93663-1
          • Editors:
          • El Kindi Rezig,
          • Vijay Gadepally,
          • Timothy Mattson,
          • Michael Stonebraker,
          • Tim Kraska,
          • Fusheng Wang,
          • Gang Luo,
          • Jun Kong,
          • Alevtina Dubovitskaya

          Publisher

          Springer-Verlag

          Berlin, Heidelberg

          Publication History

          Published: 20 August 2021

          Author Tags

          1. Deep learning
          2. Machine learning
          3. Electronic health records
          4. Generative models
          5. Synthetic data generation

          Qualifiers

          • Article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 02 Mar 2025

          Other Metrics

          Citations

          Cited By

          View all

          View Options

          View options

          Figures

          Tables

          Media

          Share

          Share

          Share this Publication link

          Share on social media